[17]トロコイド曲線を使用した歯車

図 17.1 トロコイド曲線を使用した歯車

17.1 概要

インナーロータの歯数,アウターロータの歯底円直径および偏 心量を基準として,それぞれの歯形を決定します.歯形曲線は, ころがり円直径や偏心量によって変化し,生成した歯形から,各 部屋の面積計算を行い吐出量(cc/rev)を算出します.また,3次元 歯形で表示します.

17.2 諸元入力画面

(1)ロータ諸元の入力画面を図 17.2 に示します.

- (2)サーキュラーピッチの変更により歯の大きさを変更するこ とができます.
- (3)クリアランスを与えた歯形を生成することができます.
- (4)アウターロータの歯底部分はフル R または任意の R で接続 することができます.

(5)ころがり円直径により歯形曲線を変更することができます. (6)歯幅は吐出量の計算及び三次元の歯形表示に使用します. (7)歯形生成分割角度は、歯形の細かさの尺度です.

トロコイト、ロータ諸元				- • 💌		
項目	記号	単位	ረንታ-ወ-ጵ	ፖሳጵ-በ-ጵ		
歯 数	Z	「 「	8	9		
偏心量	е	mm	1.5000			
歯底円直径	df	mm	29.6757	40.5000		
歯先円直径	da	mm	35.6757	32.6757		
基準ピッチ円直径	d	mm	24.0000	27.0000		
サーキュラーヒ゜ッチ	CP	mm	9.42478			
ころがり円直径	Rb	mm	1.5000			
チッフ゜クリアランス	ck	mm	0.0000			
歯底逃げ量	cb	mm		0.9122		
歯底 R 設定方法		·		フルR接続 👤		
歯底R	rO	mm		2.7135		
歯幅	Ь	mm	18.0000			
製品内径/外径	Di/OD	mm	12.0000	45.0000		
歯形生成分割角度	λ	deg		0.10000		
押付チッフ。クリアランス	cko	mm	0.0000			
確 定 キャンセル						

図 17.2 ロータ諸元の設定

17.3 ロータの歯形図

ロータのかみ合い組図を図 17.3 に示します. 図 17.4 の補助機 能によりピッチ円の作図やインナーロータの回転角度を変更し た図を作図することができます.また,歯形を拡大して作図す ることができます.

17.4 歯形 DXF 出力

①ロータ組図, ②インナーロータ歯形, ③アウターロータ歯
形を円弧データ DXF ファイルで出力することができます.
図 17.5 に設定フォームを示します.

👨 DXFファイル	×
「出力歯形 「© トロイドロータ組図	
○ インナーロータ歯形 ○ アウターロ	∽у歯形
出力歯数	
[出力] キャン地	
図 17.5 DXF ファイ	ル設定

17.5 面積計算

歯形計算後,各面積および吐出量を図 17.6 に示します. 図中の×マークはロータ歯形の接点を示します.

17.6 レンダリング図

歯形レンダリングを図 17.7 に示します. コントロールフォームにより視点や回転角を変更することができ、歯形図に接触線を観察することができます. 図 17.9、図 17.10 に作図例を示します.

×軸回転角	-20	•		F		
│││▼軸回転角	5	•		F		
Z軸回転角	-20	•	1	Þ		
Z軸移動量	325	•		Þ		
回転速度	1	•		Þ		
「カミアイステップ角	0	•		F		
Wire Frame BackColor						

図 17.7 歯形レンダリング

ゲ 図 17.8 コントロールフォーム

[18] Adduction Differential Gear Design System

🗵 18.1 Adduction Differential Gear

18.1 概要

Adduction Differential Gear(愛称:ピンコイド歯車)は、外歯車 と内歯車に1歯差または2歯差を与えた内転差動式の歯車減速 装置です.インボリュート歯形を用いて同じ機構を成立させる ことができますが、効率やかみ合い干渉の点からも内歯車にピ ンを配置する歯形が有利と言えます.

18.2 諸元入力

(1)歯車諸元の入力画面を図 18.2 に示します.

(2)最大歯数差は,2歯です.

(3)外歯車の歯形は、内歯車のピン径と、ころがり円および偏心 量から決定します.

(4)外歯車の歯厚管理用に,またぎ歯数を設定します. (5)円弧補間精度は,CADデータ作成時の精度です.

🥖 歯車諸元				- • 💌		
項目	記号	単位	外歯車	内歯車		
モジュール	mn	mm	2.0000			
歯 数	Z		20	21		
ピン径	Pq	mm		3.5000		
基準ピッチ円直径	d	mm	40.0000	42.0000		
偏心量	е	mm	0.8500			
ころがり円直径	dw	mm	40.0000	41.7000		
歯先円直径	da	mm	40.2000	38.5000		
歯底円直径	df	mm	36.8000	41.9000		
製品外径	od	mm	55.0000			
またぎ歯数	Zw		5			
またぎ歯厚	W	mm	25.1412			
歯幅	b	mm	12.0000			
円弧補間精度	Ci	μm	0.5000			
確 定 キャンセル						

図 18.2 諸元入力

18.3 かみ合い図

図 18.3 にかみ合い図を示します. 部分拡大によりピンと外歯 のかみ合いを確認することができます.

18.4回転図

図 18.5 に歯車回転図を示します.

18.5 歯形レンダリング

図 18.6 に歯形レンダリングを示します. X,Y,Z 軸で観察角度 の変更ができ、Z 軸移動量で拡大,縮小ができます.また,か み合いステップ角により回転速度を変更することができます.

図 18.6 歯形レンダリング

18.6 偏心量を変更した歯形

図 18.2 の歯車で偏心量を 1.3mm に変更した歯形を図 18.7 および図 18.8 に示します.

18.7 DXF ファイル出力

図 18.9 に CAD 作図例を示します.

