[付録:J] 伝達誤差解析例

J.1 実験装置

黒河,有浦の研究「歯車の負荷時高精度かみ合い誤差測定に関する研究」⁽¹⁾の成果と **CT-FEM Opera**の解析結果を比較した.

実験装置は、図 J.1 に示す動力循環式歯車運転試験機であり、 伝達誤差計測用のエンコーダは分解能1秒を有している.

J.2 実験結果と伝達誤差解析結果の比較

実験に供した歯車は図 J.2 の諸元を持つ歯車であり歯車精度は、 JIS B 1702(1998) 0 級の歯研削歯車である. 伝達誤差は、単位歯幅 当たりの荷重を 8~784 (N/mm)として 7 種類の負荷を与え、その ときの伝達誤差を計測している. 図 J.3 は 147(N/mm)の例を示し ている.

CT-FEM Opera ソフトウェアで解析する際,図J.1の試料歯車を 支持する軸受間距離が240mm あることから負荷が作用する際, 軸変位が発生することを想定し解析した.トルクと軸変位,そし て伝達誤差の実験値と解析結果を表J.1 および図J.4 に示す.

図 J.4 の荷重 200(N/mm)より大きい領域では歯実験と解析は良 く一致している.しかし、これより小さい領域では実験と解析結

達誤差解析結果

No.	単位荷重(N/mm)	トルク(Nm)	実験值(sec)	軸変位(sec)	解析結果(sec)
<1>	8	18.7	4.0	7.42	0.76
<>>	98	229.5	4.7	8.06	5.94
<>>	147	344	5.6	12.1	6.62
<4>	196	459	7.9	16.1	7.13
<>>	392	918	8.8	32.1	9.11
<6>	637	1492	11.2	52.2	11.7
<7>	784	1836	13.0	64.1	13.2

果は一致していない. この理由は, 実験の負荷が 8(N/mm)において TE=4(sec) である理由は, 歯形誤差や歯面粗さが表れていると 考えられる.

図 J.5 に実験結果と解析結果の伝達誤差を重ね合わせた図を示 すが、両者は良く一致した結果となっている. 図中に示す赤色の 縦線は、実験の目盛 20sec に合わせている.

J.3 歯面形状と歯面粗さを考慮した伝達誤差 J.3.1 平歯車(無修整)

実験に供した歯車諸元を図 J.6 に歯面形状を図 J.7 に示す. 伝達 誤差は、単位歯幅当たりの荷重を 22~392 (N/mm)として 7 種類の 負荷を与えている. 伝達誤差解析をする際は、歯面形状を図 J.8 のように与えた. 実験と解析による伝達誤差結果を図 J.9 に示す が、両者は良く一致している.

項目	記号	単位	鼓値(Pinion)	鼓値(Gear
モジュール	III	80	6.0	000
歯数	z		21	31
圧力角	αn	des	20.0	000
ねじれ角	β	des	0 * 0	0.00
ねじれ方向				.]
基準円直径	d	88	126.0000	186.0000
歯厚入力方式			転位係数	転位係数
齿直角転位係数	xn		0.00000	0.00000
またぎ歯数	Zn		*****	*****
またぎ歯厚		88	*****	*****
オーバービン径	dp	88	80000	*****
オーバーピン寸法	dn	80	*****	****
転位量	XIII		*****	****
法線曲厚減少量	fn	88	0.0000	0.0000
中心距離	a	80	156.2	000
由先円直径	da	88	138.0000	198.0000
齿底円直径	df	88	111.0000	171.0000
歯元R(工具刃先R)	Rf	88	2.2500	2.2500
歯幅	b	00	15.0000	15.0000

図 J.6 歯車諸元

J.3.2 平歯車 (歯先修整)

歯車諸元は、図 J.6 と同じであり、伝達誤差は、単位歯幅当た りの荷重を 22~654 (N/mm)として 11 種類の負荷を与えている. 伝達誤差解析をする際は、歯面形状を図J.10のように与えた.実 験と解析による伝達誤差結果を図 J.12 に示すが、両者は良く一致 している.

J.3.3 はすば歯車(無修整)

歯車諸元は、図 J.2 と同じであり、伝達誤差は、単位歯幅当た りの荷重を 8~650 (N/mm)として 16 種類の負荷を与えている. 伝 達誤差解析時の歯面形状を図 J.14 のように与えた.実験と解析に よる伝達誤差結果を図 J.15 に示すが、両者は良く一致している. また、図J.16に拡大波形を示すが、実験と解析結果は良く一致し

駆動歯車

歯面形状 図 J.13

AMTEC www.amtecinc.co.jp

表 J.2 伝達誤差解析結果

	TE	食い違い	
N/mm	実験値 <mark>(s</mark>)	解析 <mark>(s</mark>)	$\phi_1(\text{deg})$
25	3.92	3.31	0.001
250	7.06	6.23	0.003
500	10.7	10.4	0.005

J.4 まとめ

- (1) 伝達誤差の実験と解析結果は、良く一致した.
- (2) ソフトウェア解析により、ほぼ確かな伝達誤差を予測することができた.

参考文献

- 黒河,有浦,歯車の負荷時高精度かみ合い誤差測定に関する 研究,機論C, 1998-7, pp.408-415
- (2) CT-FEM Opera, 歯車応力解析ソフトウェア, アムテック,(2014)

[付録:K] 動力損失解析例

K.1 概要

歯車の基礎と設計(成瀬著)⁽¹⁾に掲載されている平歯車のかみ 合い損失率と平均滑り速度との関係の実験を基に, CT-FEM Opera⁽²⁾で解析した.その結果を以下に示す.

K.2 まとめ

- (1) 図 K.6 のように実験結果と解析結果は良く一致している.
- (2) ソフトウェア解析により、ほぼ確かな動力損失を予測することができた.

参考文献

- (1) 成瀬、「歯車の基礎と設計」, 養賢堂, 2001. P.132-133
- (2) CT-FEM Opera, 歯車応力解析ソフトウェア, アムテック, (2014)

(2) CT-FEM Opera, 歯車応力解析ソフトウェア, アムテック, カタログ(vol.18), [45] CT-FEM Operaiii をご覧ください.