[42] Skiving cutter design system

図 42.1 Skiving cutter design system

42.1 概要

円筒歯車(外歯車,内歯車)の歯切り工法の一種であるパワー スカイビングは1910年に特許が成立して100年が経過しましたが, 近年,この工法が見直され国内外で専用機が上市されるようにな りました.また,歯車加工も歯切り盤ではなく近年,マシニング センタでスパイラルベベルギヤなどや特殊な歯車も加工されるよ うになっています(カタログ(vol.16),41 頁写真).

パワースカイビングは、工具の取り付け角(交差角,テーパ角) と工具の歯形さえ決まれば高機能のマシニングセンタで加工する ことができます. Skiving cutter design system は、歯車諸元と工具 の取り付け角から工具(ピニオンカッタ)の歯形を生成すること ができるソフトウェアです.また、生成した刃形を近似インボリ ュート刃形として生成することができます.図42.1 に全体画面を 示します.

42.2 ソフトウェアの構成

Skiving cutter design system の構成を表 42.1 に示します.表中の 〇は基本ソフトウェアに含まれ、〇はオプションです. 適応歯車:インボリュート平,はすば歯車(外歯車,内歯車)

No.	項目	揭載項	構成
1	歯車寸法	42.3	0
2	工具寸法	42.4	0
3	歯形 (歯車, 工具)	42.5	0
4	組図 (2D)	42.6	0
5	歯形レンダリング	42.7	0
6	歯形創成	42.8	0
7	歯形出力	42.9	0
8	近似インボリュート刃形	42.10	0
9	設計データ管理		0
10	切り屑形状	42.12	0
11	工具兼用	42.13	0
12	面取り (R, C)	42.14	0

表 42.1 ソフトウェアの構成

○:標準ソフトウェア

◎:オプション

42.3 歯車寸法

被削歯車を内歯車としたとき歯車諸元は図 42.2 および図 42.3 のように設定します.転位係数は、直接入力する方法と、またぎ 歯厚、オーバーボール(ビトゥイーンボール)寸法があります. なお、外歯車の例を 42.11 に示します.

▶ 歯車寸法						
項目	記号	単位	數 値			
正面モジュール	mt	mm	3.3522			
正面圧力角	æt	deg	22.1316			
基礎円筒ねじれ角	βb	deg	24.7897			
軸方向ビッチ	pt	mm	21.1224			
リード	PZ	mm	1394.0798			
全歯たけ	h	mm	6.7500			
歯切転位係数	xnc		0.2500			
最小インボリュート直径(TIF)	dt	mm	217.7453			
最大心ボリュート直径	dh	mm	228.9901			
歯直角円弧歯厚	sn	mm	4.1664			
正面円弧歯厚	st	mm	4.6556			
またぎ歯数	ZM		11			
基準またぎ歯厚	w	mm	97.3066			
設計またぎ歯厚	w'	mm	97.3066			
測定ボール径	dp	mm	5.0260			
基準ビトゥイーン寸法	dm	mm	215.9706			
設計ビトゥイーン寸法	dm'	mm	215.9706			

図 42.4 寸法

42.4 工具寸法

加工工具(ピニオンカッタ)の諸元を図 42.5 に示します. ここでは、歯車のねじれ角 26.5°に対し、加工時の公差角を $\phi c=20^{\circ}$ としたときの例を示します.また、カッタの形状、位置、逃げ角の参考図を図 42.5a、42.5b に示します.

本ソフトウェアでは、交差角 ¢c、テーパ角 ¢t で工具を取り付け、図 42.2 の歯車を加工するときの工具刃形をすくい角や側面逃 げ角を考慮して生成します. なお、はすば歯車加工時のピニオン カッタには、刃付け研磨が容易となるよう横すくい角(刃付け角) は与えないものとします.

🏷 工具諸元 📃 📼 🗾						
項目	記号	単位	数 値			
刃数	zc		25			
交差角	φc	deg	20.00000			
テーバ角	φt	deg	3.00000			
外径	Do	mm	84.0124			
内径	Di	mm	56.9753			
クリアランス	ckf	mm	0.5000			
刃幅	Ь	mm	15.0000			
すくい角	θe	deg	5.00000			
前逃げ角	θf	deg	5.00000			
側面逃げ角	θs	deg	2.0000			
刃先R	Ra	mm	0.7000			
ねじれ方向			右ねじれ			
仮想ねじれ角	βv	deg	6.5000			
仮想基準円直径	75.4852					
確定 キャンセル 戻す クリア						

図 42.5 工具諸元

AMTEC www.amtecinc.co.jp

42.5 歯形 (歯車,工具)

歯車歯形を図 42.6 に、ピニオンカッタの刃形を図 42.7 に示しま す. 図 42.7 の青線刃形は, 図 42.8 に示すピニオンカッタの加工端 面の刃形であり水色線はピニオンカッタの上面の刃形を示します. 歯形図には拡大,縮小,距離計測機能があります.

42.6 組図 (2D)

組図を図 42.9 に示します. 加工座標値の工具ポイント(A, B, C) は図 42.10 に示すように歯車の中心を(0.0.0)原点としています.

42.7 歯形レンダリング

歯形レンダリング (図 42.12~42.15) では歯車とピニオンカッ タのかみ合いを確認することができます.補助機能として工具の X.Y.Z 方向の移動や回転機能がありますので図 42.13 のように工 具と歯車のかみ合い(切削)の関係を工具刃を回転させながら確 認することができます.また、図 42.15 のようにピニオンカッタ のみを表示することもできます.

図 42.13 すくい角断面と歯車

42.8 歯形創成図

歯形創成図の設定画面を図 42.15 に示します. ここでは、粗加 工時の工具切り込み量を5mm,仕上げの切り込み量を6.75mmと したときの歯形創成図を図 42.16 に示します.

項目	記号	単位	敖 値				
最大切込量	hmax	mm	6.7500				
開始切込み量	h1	mm	5.0000				
終了切込み量	h2	mm	6.7500				
交差角誤差	⊿¢C	deg	0.0000				
テーバ角誤差	⊿¢⊺	deg	0.0000				
工具位置誤差X	⊿x	mm	0.0000				
工具位置誤差Y	⊿۲	mm	0.0000				
工具位置誤差Z	⊿z	mm	0.0000				
創成刃表示個数	N		41				
歯車回転角誤差	⊿θ	deg	0.0000				
設計交差角	φC'	deg	20.0000				
設計テーバ角	φT'	deg	3.0000				
確定 キャンセル クリア							
図 12 15 齿形创成図設定							

凶 42.15 密形創成凶設定

42.9 歯形ファイル出力

歯車歯形と工具刃形を DXF ファイルおよび IGES ファイルで出 力することができます.図42.17に歯形出力設定画面を,図42.18 に工具の CAD 作図例を示します.

42.10 近似インボリュート刃形

図 42.18 で生成した刃形をインボリュートとして近似すること ができますので、工具を発注(製造)する際、容易に扱えること ができます.本例の図 42.18 の刃形は、図 42.19 のように左刃面の 場合、圧力角は $a_n=20.6265^\circ$ 、ねじれ角は $\beta=8^\circ 30$ 'で近似すること ができます.近似した刃形と理論刃形との違いは、図 42.20 に示 すようにカッタ刃先付近で 0.0007mm と僅かです.

42.12 切り屑形状 (オプション)

図 42.21 の加工条件でスカイビング加工したときの切り屑形状 を図 42.22~42.24 に示します.図 42.21 の加工条件では工具の送 り量,交差角および切り込み量を任意に設定することができます. 図 42.22 および図 42.23 の切り屑形状は,工具の1 刃が,切削を初めてから終わるまでの形状を示しています.図 42.24 は歯車とすくい面の状態を示し,図 42.25 は 2D 切削厚さを 100 倍で示しています.

図 42.21 加工条件

図 42.22 切り屑形状

図 42.21 加工条件の 切り厚さ値(csv) で切り屑形状を図 42.24 のように csv ファイルに出力することができます.

42.13 工具兼用 (オプション)

図 42.18 の工具で図 42.2 と異なる歯車を加工するとき,この工 具でどこまで兼用できるかを計算します.

図 42.25 の歯車は、図 42.2 の歯車のモジュールと圧力角は同じ ですが、歯数とねじれ角が異なります.また、工具の取り付け角 を図 42.26 とすると図 42.27 および図 42.28 を表示することができ ます.そして、図 42.28 の□部分を拡大して歯車諸元(図 42.25) の歯形との比較をすると図 42.29 のようにその差は 1.2µm である ことが解ります.同様に左歯面を計測すると0.7µmです.

以上に示したように対象歯車と異なる工具であっても交差角と テーパ角を調整することにより、歯形誤差を微小に抑えることが できますので工具の兼用が可能です.ただし、本例の場合、極め て良く一致していますが、諸元や条件によっては良く一致しない 場合もあります.そして、図 42.26 で設定したときの歯形レンダ リング表示(図 42.27)や、加工条件(図 42.21)に基づく切り屑 形状(図 42.22)も解析することができます.

ここでは内歯車の例題を示しましたが、外歯車も同様に計算することができます. なお、工具兼用は図 42.30 のように第2 画面で計算します.

図 42.30 工具兼用画面

42.14 外歯車の例

外歯車も内歯車同様,工具刃形状,切り屑形状,インボリュート近似刃形を計算します.計算例を図 42.31~42.43 に示します.

🏷 工具創成図

図 42.40

図 42.38 すくい角断面と歯車

項目	記号	単位	数 値			
最大切込量	hmax	mm	6.7500			
開始切込み量	h1	m	6.0000			
終了切込み量	h2	m	6.7500			
交差角誤差	⊿¢C	des	0.0000			
テーパ角誤差	⊿φ⊺	deg	0.0000			
工具位置誤差X	⊿х	m	0.0000			
工具位置誤差Y	⊿۲	m	0.0000			
工具位置誤差Z	۵Z	m	0.0000			
創成刃表示個数	N		31			
歯車回転角誤差	Δθ	des	0.0000			
設計交差角	φC'	deg	-20.0000			
設計テーバ角	¢⊺'	des	3.0000			
確定 キャンセル クリア						

図 42.39 歯形創成図設定

図 42.41 involute 近似刃形

🔈 切粉形状諸元 📃 🗖 🗖 🗾						
項目		記号	単位		数 値	
歯車軸方向送り		٧z	m/re	v	0.0500	
回転角度分割数		N			51	
交差角		φc'	deg		-20.0000	
設計テーパ角		φť'	deg		3.0000	
設計切込み量		h	mm		6.7500	
計算結果						
軸方向送り(mm)	黄車回	転角(deg)		具回転角(deg)	
0.050000	0.050000 -3		286	230.769231		
-0.049996	3	60.000	000		-230.748537	
0.078000	-5	61.650	0366		360.000000	
切粉形状(3D) 切粉厚さ(2D) 切粉厚さ値(CSV)						
確定 キャンセル						
図 42.42 加工条件						

図 42.43 歯車と切り屑形状(外歯車)

42.15 面取り C, R (オプション)

歯車の歯先面取りが必要な場合は、工具に面取り形状を与えることができます.図42.2の歯車諸元の面取り設定は、図42.4のようにC面、R面を選択することができます.

0	s 歯車諸元 📃 🗉 💌								
宙車種類			🔘 内歯車		◙ 外歯車				
	諸	元	歯先面取						
I		項	B	記号	単位	藪	値		
歯先面取り				С	面 🔻				
	歯先R		Ra	mm	無	붋			
	たけ方向		Cah	mm	Ca				
歯厚方向			Caw	mm	0.5000				
	確定 キャンセル 戻す 標準 クリア								

図 42.44 面取り設定

42.16 HELP 機能

- • •

開始側 終了側

Ш

歯形創成

操作方法を知りたい場合は[HELP]機能を使うことができます. 図 42.45 で目次を選択することもできますし,図 42.46 のように不 明な内容がある場合,その画面をアクティブとして[F1]を押すこ とで図 42.46 の説明画面を表示します.

AMTEC www.amtecinc.co.jp

176