[3] involute Σ iii (worm gear design system)

 \boxtimes 3.1 involute Σ iii (worm gear)

3.1 概要

本ソフトウェアは、今まで、別々にしていた involute Σ (worm gear)と involute Σ (worm and helical gear)を一体として新しく開発し たソフトウェアです. また、今までオプション扱いしていた機能 も一部、基本ソフトウェアに含めると共に種々新しい機能も追加 しています.また、本カタログから JGMA4301-01 も追加しました. 全体画面を図 3.1 に示します.

3.2 ソフトウェアの構成

ソフトウェアの構成を表 3.1 に示します.表中の〇は基本ソフトウェアに含まれ◎はオプションです.

involute ∑ iii(worm gear)は、ウォームの相手歯車はウォームホイ ールですが、相手歯車をヘリカルギヤにすることもできます。相 手歯車がヘリカルギヤの場合の説明は 3.16 以降をご覧ください。 ご注文時は、価格表から必要なソフトウェアをお選びください。

NT		掲	掲載項			
No.	山 一 一 月 一 一 月 一 一 月 一 一 月 一 一 月	WG	WH	悌 戊		
1	基準ラック	3.3	3.16	0		
2	寸法諸元	3.4	3.17	0		
3	歯車修整	3.5	3.18	0		
4	歯形計算	3.6	3.19	0		
5	かみ合い図	3.7	3.20	0		
6	歯形レンダリング	3.8	3.21	0		
7	歯当たり	3.9	3.22	0		
8	強度計算(金属×金属)	3.10		0		
9	強度計算(金属×樹脂)	3.10	3.23	0		
10	軸受荷重	3.11	3.24	0		
11	FEM 歯形応力解析	3.12	3.25	0		
12	伝達誤差解析	3.13	3.26	0		
13	軸間距離変動解析	3.13	3.26	0		
14	歯面評価	3.14	3.27	0		
15	歯形ファイル出力	3.15	3.28	0		
16	設計データ管理	3.	29	0		
17	JGMA4301-01(強度)	3.10.2		0		

表 3.1 ソフトウェアの構成

WG: worm gear, WH: worm and helical gear

3.3 基準ラック(プロパティ)

ウォームギヤの基準ラックを図 3.2 に示します.基準平面は, 歯直角または軸平面を選択することができます.また,図 3.2 の ように基準ラックの実寸法図を表示することができ,ウォームの 基準円直径から進み角を決める方式と,進み角から基準円直径を 決める方式を選択することができます.

図 3.2 基準ラック (ウォームギヤ)

3.4 寸法諸元

ウォームギヤ寸法諸元の入力画面を図 3.3 に示します.ウォームの歯形は図 3.4(a)に示すようにA形,N形,K形,I形,C形の 5 種類を標準ソフトウェアに含めています.ただし,C形は強度 計算規格の適用外ですので寸法や歯形生成に留めています.また, 諸元の入力範囲は、モジュールは 0.001~50,圧力角は 5~30°, 条数は 1~15 です.歯厚を調整する方法は、図 3.4(c)のように歯 厚減少量または横転位係数で設定することができます.本例では ウォームの歯厚を減少させウォームホイールの歯厚を増加させる 例を示します.

3.5 歯車修整 (オプション)

図 3.5 のようにウォームの歯形修整を設定します. ここでは, 図 3.6 ウォーム歯形修整2のように歯先および歯元で3µmの歯形 修整を与えたウォームとします.

3.6 歯形計算 歯形計算条件は図 3.7(a)のようにホイール加工用工具(ホブ)

の諸元を設定することができます.また、歯形を表示する際の分割数は図3.7(b)で設定することができます、

ホイール加工用工具に歯形修整を与える場合は,図 3.7 で「修 整有り」として図 3.8 のように設定することができます.

ホイール加工用ホブを図 3.9 のように転位ホブ(例: α =12°) として設定することもできます(α =12°とすることにより

*m*_n=1.975 と定まる). こ の方法は、歯当たり調整 方式の一種として採用さ れています.

図3.10に標準ホブと転 位ホブで加工したときの 歯当たりを示しますが, 転位ホブで加工した方の 歯当たりが歯たけ中央に 寄っていることが解りま す.歯当たりに関しては 3.9をご覧ください.

 ▶ 歯形計算 ■ ■ ■ 						
条件設定 精度設	定					
項目(Worm)	記号	単位	数 値			
モジュール	mn	mm	2.000000			
圧力角	αn	deg	15.000000			
砥石外径	OD	mm	****			
砥石凸 R	Δr	mm	*****			
工具(Wheel)	記号	単位	數 値			
モジュール	mnc	mm	1.975010			
圧力角	anc	deg	12.000000			
条数	Zw		1			
基準円直径	dmc	mm	15.0000			
進み角	γc	deg	7 * 33 * 57.43 ″			
ねじれ方向			右ねじれ 👻			
取り付け角	Σc	deg	-3.82491 📃			
取付中心距離	ac	mm	49.4149			
刃末のたけ	hkc	mm	2.5695			
刃元のたけ	hfc	mm	1.9305			
刃 厚	sc	mm	2.0671			
刃先R	r	mm	0.7406			
溝数	N		12			
修整			無し 👻			
のど丸み半径	rt		3.0001 🛄			
確定 キャンセル クリア						
図 3.9	転	位ホ	ブの設定			

図 3.10 歯当たり (無修整歯形)

歯形計算終了後,図3.11 に寸法結果を表示します.なお,ウォ ームの三針寸法およびバックラッシは歯形修整を考慮した実歯形 を基に計算しています.

項目	記号	単位	Torm	Theel
歯末のたけ	ha	mm	2.0000	2.0000
歯元のたけ	hf	mm	2.5000	2.5000
全歯たけ	h	mm	4.5000	4.5000
ビッチ円直径	dw	mm	10.0000	83.6909
基礎円直径	db	mm	5.9816	80.7266
理論中心距離	a	mm	46	.8454
リード	PZ	mm	6.4127	****
ピッチ	Px/Pt	mm	6.4127	6.4127
直径係数	q		4.8990	****
歯底幅	٧n	mm	2.9407	****
キャリバ歯たけ	hj	mm	2.0099	2.0283
理論弦歯厚	sjo	mm	3.1416	3.1409
設計弦歯厚	sj	mm	2.0028	4.1762
またぎ歯数	ZM		*****	4
またぎ歯厚	W	mm	****	22.7588
E針寸法(ピン~歯先)	dma.	mm	12.3691	*****
三針寸法(ヒ゜ソ〜ヒ゜ソ)	dmw	mm	10.7383	****
机响机寸法	dmh	mm	*****	91.5375
のど丸み半径	rt	mm	***	8.0001
正面かみ合い率	εα		2	.1193
鼬/円周方向バックラッシ	BL×	mm	0.1064	0.1026

3.7 かみ合い図

歯形計算終了後,図 3.12 のように歯形を表示することができ,図 3.13 のように歯形の拡大作図や距離計測,R計測,そして回転機能などがあります.

3.8 歯形レンダリング

歯形計算終了後,図3.14のように歯形レンダリングを表示する ことができます.図3.13では歯面が接触していませんが,これは ピッチ円部分では歯面接触せず,図3.15のようにホイールの歯底 と側面部付近で歯面接触しているからです.

図 3.15 の補助フォームは、観察角度や歯車の位置変更、拡大機能、そして自動回転機能などがあります.

3.9 歯当たり (オプション)

図 3.16 の歯当たり設定では、軸の取り付け誤差や接触最大クリ アランス(光明丹厚さ)を設定することができます.本例では、 接触最大クリアランスを c=3µm としたときの歯当たりを図 3.17 に示します.ウォームの歯形の種類や歯形修整,そしてホイール を転位ホブで加工したときや、取り付け誤差を与えたとき歯当た りがどのように変化するかを把握することができます.

また,図 3.17(b)右下の補助フォームで歯形を拡大することや観 察角度を変更することができます.図 3.18 は、進み角をγ=5.74° としたときの歯当たりで歯当たり模様が大きく変わることが解り ます.

図 3.18 歯当たり 2 (m_n=2,α=15°, γ=5.74°, I 形)

3.10 強度計算

3.10.1 金属×金属

強度諸元を図 3.19 に, 強度計算結果を図 3.20 に示します. 強度 計算はJGMA405-01:1978 に基づいて計算します.動力はkWとW, トルクは MN・m, kN・m, N・m を選択することができます. また,歯面強さ許容応力係数 (Scim)は,任意に設定することが できます. 各種係数は標準値を表示しますが,任意に変更可能で すし,規格適用外の歯車であっても設計者の判断で任意に入力す ることができます.

図 3.19 強度諸元(金属×金属)

強度計算結果								
金属×金属 金属×樹脂								
項目	記号	単位	数 値					
滑り速度	Vs	m/s	0.321					
効 率	ηR		0.810					
滑り速度係数	Κv		0.643					
回転速度係数	Kn		0.766					
呼び接線力	Ft	N	1587.179					
許容接線力	Ftlim	N	1761.436					
歯面強さ	Sfc		1.110					

図 3.20 強度結果

3.10.2 金属×金属(JGMA4301-01:2017),(オプション)
 JGMA4301-01 は, ISO/TR 14521 を基本にした円筒ウォームギャの強度計算です.図 3.21~3.26 に計算例を示します.

∑ 強度諸元 [JGMA4301-01]				×
動力 材料、潤滑 ピッチング強さ 調	朝耗強さした	せん断折損強さ		
項目	記号	単位	数 値	
等価弾性係数	Ered	MPa	139113.6276	
ウォームホイールの評価トルク	T2e	Nm	55.0000	
接触応力パラメータ修正係数	fp		1.0139	
平均接触応力パラメータ	p*m		0.8323	
歯面平均接触応力	σHm	MPa	281.2153	
基準限界接触応力	σ HlimT	MPa	425.0000	
ピッチング寿命係数	Zh		1.5982	
滑り速度係数	Zv		0.9319	
寸法係数	Zs		1.0083	
歯数比係数	Zu		0.9014	
澗滑油係数	Zoil		0.8900	
限界接触応力	σHG	MPa	512.0197	
最小ピッチング安全率	SHmin		1.0000	
ウォームホイール限界呼びトルク	T2Hlim	Nm	182.3296	
	曜定	キャンセル		クリア

図 3.24 摩耗強さの設定

∑ 強度諸元 [JGMA4301-01]								
動力 材料、潤滑 ピッチング強さ 月	鮮耗強さ せ	ん断折損強さ						
項目	記号	単位	數 値					
ホイールリム厚さ	Sk	mm	3.6610					
ウォームホイール基準円上歯厚	sm2	mm	5.0654					
摩耗後の正面歯元平均歯厚	Sf2	mm	7.1811					
摩耗後の有効正面歯元平均歯厚	Sft2	mm	7.6120					
歯元せん断応力	τF	MPa	20.0296					
基準限界歯元せん断応力	τFlimT	MPa	82.0000					
かみ合い率係数	Yε		0.5000					
ウォームホイール歯形係数	YF		1.1623					
進み角係数	Yγ		1.0170					
ウォームホイールリム厚さ係数	YK		1.5330					
せん断寿命係数	YNL		1.0000					
限界歯元せん断応力	τFG	MPa	82.0000					
最小歯元せん断折損安全率	SFmin		1.1000					
ウォームホイール限界呼びトルク	T2Flim	Nm	225.1664					
確定 キャンセル クリア								
図 3.25 せん断強さの設定								
強度計算結果 [JGMA4301	-01]		- • •					

項目	記号	数 値
ピッチング安全率	SH	1.8207 >=SHmin
歯面摩耗安全率	Sw	2.3641 >=Swmin
歯元せん断折損安全率	SF	4.0939 >=SFmin

図 3.26 強度結果

3.10.3 金属×樹脂

ウォームが金属でホイールが樹脂の強度諸元を図 3.27 に, 強度 計算結果を図 3.28 に示します. 強度計算は, Lewis の式に基づき 歯面強さはヘルツの応力に基づいて計算します.

樹脂材料は M90-44 を標準としていますが,他の材料(KT-20,GH-25,MC ナイロン)を選択することができます.また,これ以外の材料では M90 比率係数(共通物性値との比)で対処することができます.

図 3.27 強度諸元(金属×樹脂)

▶ 強度計算結果								
金属×金属 金属×樹脂								
項目	記号	単位	数 値					
周 速	٧	m/s	0.131					
効 率	ηR		0.727					
接線力	Ft	N	95.590					
有効歯幅	bw	mm	9.600					
曲げ強さ(¶o	rm whee	el)						
材料係数	KM		1.000					
歯形係数	YF		0.903					
速度補正係数	Κv		1.399					
温度係数	KT		0.650					
澗滑係数	KL		1.000					
許容曲げ応力	σblim	MPa	10.843					
最大許容曲げ応力	σlim	MPa	9.860					
許容接線力	Fa	N	308.039					
曲げ強さ	Sfb		3.222					
せん断強さ(₹	orm whe	eel)						
円弧歯厚	So	nm	4.573					
断面積	A	nm²	102.526					
許容せん断応力	σslim	MPa	5.975					
許容接線力	Fs	N	510.471					
せん断強さ	Sfs		5.340					

図 3.28 強度結果(金属×樹脂)

3.11 軸受荷重

軸受荷重の計算結果を図 3.29 に示します.

軸受け荷重[Worm	× Worm	n wheel(金属	×金属)]		
諸元項目	記号	単位	Torm	Thee I	
Normトルク 👻	T	N*n 👻	2.0000 📃	66.4162	
摩擦係数	μ		0	.044	
軸受け問題知識	v1,b1	88	50.0000	50.0000	
軸受け間距離	w2,h2	00	50.0000	50.0000	
Worx回転方向			Æ	‡ Σ. ▼	
<norm, td="" wheellこ加わる<=""><td>571></td><td></td><td></td><td></td><td></td></norm,>	571>				
項目	2	号 単位	Vorm	Thee I	
円周方向に加わるナ) F1	L N	400.000	1587.178	
軸方向に加わる力	Fe	n N	1587.178	400.000	
半径方向に加わるナ) Fi	r N	438.126	438.126	x ##0
<nora側 td="" 軸受けに加れ<=""><td>>るカ></td><td></td><td></td><td></td><td><u>2</u> 850</td></nora側>	>るカ>				<u>2</u> 850
項目	2	号 単位	Brg al	Brg a2	Brg bl
スラスト荷重	Fa	a N	1587	.178	→ Ā
Ft のラジアル荷重分	力 Fra	s1 N	200.000	200.000	W2 - Brand
Fr のラジアル荷重分	力 Fre	n2 N	219.063	219.063	
Fa のラジアル荷重分	力 Fre	83 N	-79.359	79.359	
ラジアル荷重合力	Fr	a N	243.962	359.243	
<nheel td="" 側="" 軸受けに加<=""><td>わるカ></td><td></td><td></td><td></td><td></td></nheel>	わるカ>				
項目	2	号 単位	Brg b1	Brg b2	
スラスト荷重	Fa	b N	400	.000	
Fr のラジアル荷重分	力 Frt	51 N	219.063	219.063	
Ft のラジアル荷重分	力 Frt	52 N	793.589	793.589	Right band
Fa のラジアル荷重分	力 Frt	58 N	-167.382	167.382	Worm X Worm Wheel
ラジアル荷重合力	Fr	b N	795.270	882.680	
クリーク (10) 単合/ J 参考図	[確定	キャンセル	507	Brg b2

図 3.29 軸受荷重

3.12 2D-FEM 歯形応力解析 (オプション)

図 3.30 の FEM の設定画面では縦弾性係数,ポアソン比,分割 数および荷重(例では円周力をεで除した値)を設定します. 図3.31および図3.32にウォームとホイールの解析結果を示します. また,最大値の節点や要素を点滅表示で示すこともできます.

∑ FEM解析条件				- • ×		
Worm材料記号			合金鋼浸炭焼入	.h		
Wheel材料記号			りん青銅遠心鋳	ě-B-		
項目	記号	単位	Torm	Theel		
縦弾性係数	E	MPa	205800.0	80000.0		
ポアソン比	ν		0.30	0.30		
縦分割数(歯面部)	mNo		21	21		
横分割数	wNo		20	20		
荷重点位置	Nf		2	2		
荷重	F N 750.0000					
	確定 キャンセル クリア					

図 3.30 FEM 解析の設定

3.13 伝達解析 (オプション)

3.13.1 伝達誤差解析(オプション)

伝達誤差解析は図 3.33 に示すように、片歯面かみ合いによる伝 達誤差解析と、両歯面かみ合いによる軸間距離変動解析ができ、 ウォーム1回転時とホイール1回転時を選択することができます. 例題では、ウォーム回転速度 600min⁻¹でホイール1回転とし、軸 の取り付け誤差は無いものとして解析します.

ピッチ誤差は、図 3.34 のように設定(最大値設定または、歯ご とに設定可)することができます. 伝達誤差解析結果を図 3.35 に、 ワウ・フラッタ(回転むら)を図 3.36 に、フーリエ解析結果を図 3.37 に示します.また、ワウ・フラッタを「音」に変換させる機 能もありますし、解析結果を CSV ファイルに出力することもで きます.

3.13.2 軸間距離変動解析 (オプション)

多くのウォームギヤは片歯面接触として使用しますが,装置に よっては両歯面を接触させかみ合わせる場合があります.軸間距 離変動解析は,図3.33 で設定したピッチ誤差や取り付け誤差など を考慮して中心距離の変動を解析します.図3.38 に解析結果を示 します.また,解析結果を CSV ファイルに出力することができま す.

3.14 歯面評価 (オプション)

歯面評価には、すべり速度グラフ(図3.39)とヘルツ応力グラフ(図3.40)があります。すべり速度は、歯の接触位置における 速度を計算し、ヘルツ応力も歯の接触位置における歯形(歯の変 形は考慮していません)から計算しています。いずれも強度計算 および伝達誤差解析後に有効です。

3.15 歯形ファイル出力

歯形ファイルは図 3.41 のようにウォーム,ホイールそして工具 (ホブ)の歯形(任意歯数出力可)を生成します.ファイルの種 類は DXF-2D, DXF-3D, IGES-3D の 3 種類です. CAD 作図例を 図 3.42 に示します.

◆ウォームの相手歯車がヘリカルギヤの場合◆

図 3.43 ウォームの相手歯車がヘリカルギヤの例

3.16 基準ラック

ウォームギヤの基準ラックを図 3.44 に示します. 基準平面は, 歯直角または軸平面を選択することができます.

図 3.44 基準ラック (ウォーム&ヘリカルギヤ)

3.17 寸法諸元

ウォーム&へリカルギヤ寸法諸元の入力画面を図3.45に示しま す.ウォームの歯形は図3.46(a)に示すようにA形,N形,K形, I形,C形の5種類を標準ソフトウェアに含めています.ただし, C形は強度計算規格の適用外ですので寸法や歯形生成に留めてい ます.また,諸元の入力範囲は、モジュールは0.001~50,圧力角 は5~30°,条数は1~15です.歯厚を調整する方法は、図3.46(c) のように歯厚減少量または横転位係数で設定することができます. 本例ではウォームの歯厚を減少させへリカルギヤの歯厚を増加さ せる例を示します.

3.18 歯車修整(オプション)

図 3.47 のようにウォームに歯形修整を, ヘリカルギヤに歯面修 整を与えることができます. 図 3.48 および図 3.49 にウォームの歯 形設定とヘリカルギヤの歯面修整の例を示します.

図 3.49 ヘリカルギヤ歯形・歯すじ修整とトポグラフ

3.19 歯形計算

歯形計算条件は図 3.50 (a)のようにヘリカルギヤ加工用工具(ホ ブ)の諸元を設定することができます.また,歯形を表示する際 の分割数は図 3.50 (b)で設定することができます.歯形計算終了後, 図 3.51 に寸法結果を表示します.なお,ウォームの三針寸法およ びバックラッシは歯形修整を考慮した実歯形を基に計算していま す.なお,ヘリカルギヤは図 3.50 の工具に基づいて生成した歯形 です.

∑ 寸法計算結果						
項目	記号	単位	Torm	Thee I		
歯末のたけ	ha	mm	2.0000	2.0000		
歯元のたけ	hf	mm	2.5000	2.5000		
全歯たけ	h	mm	4.5000	4.5000		
ビッチ円直径	dw	mm	10.0000	83.6909		
基礎円直径	db	mm	5.9816	80.7266		
理論中心距離	a	mm	46	.8454		
リード	PZ	mm	6.4127	1288.0530		
ビッチ	Px/Pt	mm	6.4127	6.4127		
直径係数	q		4.8990	****		
歯底幅	٩'n	mm	2.3195	****		
キャリバ歯たけ	hj	mm	2.0099	2.0283		
理論弦歯厚	sjo	mm	3.1416	3.1409		
設計弦歯厚	sj	mm	2.6240	3.5550		
またぎ歯数	zm		*****	4		
またぎ歯厚	ų.	mm	*****	22.1588		
三針寸法(ピン~歯先)	dna.	mm	13.2411	****		
三針寸法(ピン~ピン)	dnw	mm	12.4823	****		
オーバーボール寸法	dnh	mm	*****	89.0944		
のど丸み半径	rt	mm	*****	*****		
正面かみ合い率	εα		2	.0662		
軸/円周方向バっクラっシ	BL×	mm	0.1094	0.1055		

図 3.51 寸法結果

3.20 かみ合い図

歯形計算終了後,図 3.52 のように歯形を表示することができ,図 3.53 のように歯形の拡大作図や距離計測,R計測,そして回転機能などがあります.

図 3.53 歯のかみ合いと補助フォーム

3.21 歯形レンダリング

歯形計算終了後,図 3.54 のように歯形レンダリングを表示する ことができます.図 3.55 の補助フォームは,観察角度や歯車の位 置変更,拡大機能,そして自動回転機能などがあります.

図 3.54 レンダリング

図 3.55 歯の接触

3.22 歯当たり (オプション)

図 3.56 の歯当たり設定では、軸の取り付け誤差や接触最大クリ アランス(光明丹厚さ)を設定することができます.本例では、 接触最大クリアランスを c=3µm としたときの歯当たりを図 3.57 に示します.ウォームの型式や歯形修整,そして軸の取り付け誤 差を与えたとき歯当たりがどのように変化するかを把握すること ができます.

また,図 3.57(b)右下の補助フォームで歯形を拡大することや観察角度を変更することができます.

図 3.56 歯当たり設定

3.23 強度計算

強度諸元を図 3.58 に, 強度計算結果を図 3.59 に示します. 曲げ 強さは Lewis の式に基づき, 歯面強さはヘルツの応力に基づいて 計算します. 動力は kW と W, トルクは MN·m, kN·m, N·m, N·cm を選択することができます.

材料の設定は、ウォームとヘリカルギヤ共に図 3.58a の材料を 選択することができます.また、摩擦係数や各種係数は標準値を 表示しますが、任意に変更することができます.

Σ 強度計算結果							
項目	記号	単位	Torn	Helical gear			
滑り速度	٧s	m/s	0.321	*****			
周 速	٧	m/s	****	0.064			
効 率	μ		0	.727			
PV値	P۷	MPa•m/s	15	.452			
曲げ強さ項目	記号	単位	Vorm	Helical gear			
接線力	Fx	N	71	.239			
材料係数	KM		1.000	1.000			
歯形係数	YF		0.504	0.696			
速度補正係数	Κv		1.000	1.399			
温度係数	KT		1.000	0.650			
潤滑係数	KL		1.000	1.000			
複合有効歯幅	bw	mm	19	.835			
許容曲げ応力	σblim	MPa	196.000	8.826			
最大許容曲げ応力	σ	MPa	163.333	6.691			
許容円周力	Fa	N	3268.407	184.838			
曲げ応力	σb	MPa	3.560	2.579			
曲げ強さ	Sft		45.880	2.595			
歯面強さ項目	記号	単位	Vorm	Helical gear			
許容ヘルツ応力	σHlim	MPa	490.500	57.303			
弹性率	E	MPa	205940.000	1721.067			
許容円周力	Fh	N	7379.542	100.718			
ヘルツ応力	σH	MPa	48.193	48.193			
歯面強さ	Sfh		103.589	1.414			
せん断強さ項目	記号	単位	Vorn	Helical gear			
円弧歯厚	So	mm	****	3.564			
断面積	A	mm ²	****	57.715			
許容せん断応力	σslim	MPa	*****	4.863			
許容円周力	Fs	N	****	233.904			
せん断応力	σs	MPa	****	1.481			
せん断強さ	Sfs		****	3.283			

図 3.59 強度結果

3.24 軸受荷重

軸受荷重の計算結果を図 3.60 に示します.

3.25 2D-FEM 歯形応力解析 (オプション)

図 3.61 の FEM の設定画面では縦弾性係数,ポアソン比,分割 数および荷重(例では円周力を ε で除した値)を設定します.

図3.62および図3.63にウォームとヘリカルギヤの解析結果を示 します.また,最大値の節点や要素を点滅表示で示すこともでき ます.

∑ FEM解析条件					
Worm材料記号	構造用綱				
Wheel材料記号	M90-44				
項目	記号	単位	Torm	Thee I	
縦弾性係数	E	MPa	205940.0	1721.1	
ポアソン比	ν		0.30	0.35	
縦分割数(歯面部)	mNo		21	21	
横分割数	wNo		21	21	
荷重点位置	Nf		2	2	
荷重	F	N	34.5000		
確定 キャンセル クリア					

図 3.61 FEM 解析の設定

3.26 伝達誤差 (オプション)

3.26.1 伝達誤差解析

伝達誤差解析は図3.64 上部に示すように、片歯面かみ合いによ る伝達誤差解析と、両歯面かみ合いによる軸間距離変動解析がで き、ウォーム1回転時とヘリカルギヤ1回転時を選択することが できます. 例題では、ウォーム回転速度 600min⁻¹でヘリカルギヤ 1回転とし、軸の取り付け誤差は無いものとして解析します.

ピッチ誤差は、図3.64のように設定(最大値設定または、歯ご とに設定可)することができます.伝達誤差解析結果を図3.66に、 ワウ・フラッタ(回転むら)を図3.67に、フーリエ解析結果を図 3.68に示します.また、ワウ・フラッタを「音」に変換させる機

能もあり、解析結果を CSV ファイルに出力することもできます.

3.26.2 軸間距離変動解析

多くのウォームギヤは片歯面接触として使用しますが,装置に よっては両歯面を接触させかみ合わせる場合があります.軸間距 離変動解析は,図 3.64 で設定したピッチ誤差や取り付け誤差など を考慮して中心距離の変動を解析します.図 3.69 に解析結果を示 します.また,解析結果を CSV ファイルに出力することができま す.

3.27 歯面評価(オプション)

歯面評価には、すべり速度グラフ(図3.70)とヘルツ応力グラフ(図3.71)があります。すべり速度は、歯の接触位置における 速度を計算し、ヘルツ応力も歯の接触位置における歯形(歯の変 形は考慮していません)から計算しています。いずれも強度計算 および伝達誤差解析後に有効です。

3.28 歯形ファイル出力

歯形ファイルは図 3.72 のようにウォーム, ヘリカルギヤそして 工具(ホブ)の歯形(任意歯数出力可)を生成します.ファイル の種類は DXF-2D, DXF-3D, IGES-3D の 3 種類です. CAD 作図 例を図 3.73 に示します.

3.29 設計データ管理

データベースは, Microsoft Access Database, Microsoft SQL Server そして ORACLE MySQL Server に対応しています. また, 旧ソフ トウェアの involute Σ (Worm Gear)および involute Σ (Worm and Helical Gear)で作成した設計データの読み込みも可能です. データ ベースの設定画面を図 3.74 に示します.

※Microsoft SQL Server および ORACLE MySQL Server は、インストールされている必要があります.

🐮 データベースの設定					
データベースサーバーの種類	Microsoft Access Database 🔹				
Microsoft Access Database データベース名 GearP データベースの場所 C:¥Pr	Microsoft Access Database Microsoft SQL Server ORACLE MySQL Server Usramuatatemitteteearrruo				
接続テスト 作成 確定 キャンセル 削除					

図 3.74 データベースの設定

3.30 HELP 機能

操作途中で使い方が解らない場合は,アクティブ画面で[F1]キ ーを押すことで図 3.75 のように説明文を表示します.

図 3.75 HELP 機能の例

3.31 ウォームギヤの種類

ウォームギヤの種類を図 3.76~3.83 に示します. なお, []内 数値はソフトウェア番号です.

図 3.78 [36]ヒンドレーウォーム

図 3.80 [39]内歯ウォーム

ホブ加工ホイールと鼓形ウォーム

図 3.82 [44]SS-Worm gear

図 3.77 [3]ウォーム×ヘリカルギヤ

図 3.79 [28]傾斜ウォームギヤ

図 3.81 [37]LCCW ウォームギヤ

ホイール歯幅が広い例 図 3.83 [3]円筒ウォームギヤ