

[21] involute Σ iii (Spherical involute Hypoid gear design

21.1 Spherical Hypoid gear design system

21.1 概要

Spherical Hypoid gear design system は, 寸法, 歯形, 強度計算を トータルに設計することができます. ハイポイドギヤの歯形, 歯 すじは、歯切り機械から生成されるものですが、本ソフトウェア では、球面インボリュート歯形を持つスパイラルベベルギヤ(大 歯車)にオフセットを与えピニオンの歯形を解析し1組の歯車と しています. 図 21.1 に全体画面を示します.

21.2 ソフトウェアの構成

Spherical Hypoid gear design system の構成を表 21.1 に示します. 表中の○は基本ソフトウェアの機能で◎はオプション機能です.

No.	項目	掲載項	構成
1	寸法	21.2	0
2	組図	21.4	0
3	精度	21.5	0
4	軸受荷重	21.6	0
5	歯形、歯すじ修整	21.7	0
6	歯形レンダリング	21.9	0
7	歯当たり	21.10	0
8	伝達誤差	21.11	0
9	バックラッシ変化	21.12	0
10	強度計算(AGMA2003-B97)	21.13	0
11	FEM 歯形応力解析	21.15	0
12	歯形データ出力	21.16	0
13	測定データ出力(Carl Zeiss)	21.17	0

表 211 ソフトウェアの構成

21.3 寸法設定

AGMA2005-B88規格に基づいてハイポイドギヤの各部寸法を 計算します. モジュール, 歯数, オフセット量を入力することに より標準値が入力されます.数値が不明な場合は,標準値を入力 することができ、ねじれ角やオフセット量、工具半径などを自由 に設定することができます. 軸角は標準90°で入力範囲はΣ=10° ~170°且つ,冠歯車(ピッチ円すい角最大90°未満)に対応してい ます. また、歯先円すい角、歯たけなどを変更することができま す. 図21.2に寸法設定を,図21.3,21.4に寸法結果を示します.

▶ 寸法結果[ANSI/AGMA 2005-D03]								
寸法1 寸法2								
外端項目	記号	単位	Pinion	Gear				
正面モジュール	mt	mm	2	.5000				
円すい距離	A	mm	78.1548	41.7060				
基準円直径	d	nm	21.7673	82.5000				
歯先円直径	do	mm	28.9293	82.6530				
歯底円直径	dr	mm	19.8812	81.3327				
全歯たけ	ht	nm	4.5767	4.4763				
有効歯たけ	hk	mm	4	.0611				
歯末のたけ	8.0	mm	3.6243	0.5188				
歯元のたけ	bo	mm	0.9524	3.9575				
頂げき	с	mm	0.3332	0.4336				
円ビッチ	ср	mm	7	.8540				
正面円弧歯厚	St	mm	6.8327	2.3608				
正面円弧歯厚減少量	ft	mm	0.0000	0.0000				
弦歯厚	tnc	mm	4.4359	2.0715				
キャリバ歯たけ	ac	mm	3.8513	0.5207				
項目	記号	単位	Pinion	Gear				
凹面圧力角	Φ1	des	11.7582	28.2418				
凸面圧力角	Φ2	deg	28.2418	11.7582				
ビッチ円すい頂点の位置	Z	mm		-4.6040				
歯先円すい頂点の位置	Go, Zo	mm	21.8715	-5.0223				
歯底円すい頂点の位置	GR, ZR	mm	42.8473	-4.6039				
円すい頂点~内端歯先	xi,Xi	m	25.2616	8.6560				

	00,10				0110			
歯底円すい頂点の位置	GR, ZR	mm		42.	8473		-4	4.6039
円すい頂点~内端歯先	xi,Xi	m		25.	2616		8	.6560
図2	21.3	寸注	結	果	1			
寸法結果[ANSI/AGMA 200	5-D03]							• 💌
法1 寸法2								
項目	記号	単位	F	Pini	on		Gea	ar
基礎円すい角	δb	deg	7 *	31	9.4	68	20	39.3
歯末角	θa.	deg	5 *	9	8.3	1	16	58.8
歯元角	θf	deg	1 *	12	55.4 "	5	25	27.5
歯元角の和	Σδ	deg	6	•	38	'	2	2.9
歯先間の軸方向距離	×b	mm		14	.7450			1.5854
相当90°かさ歯車歯数比	m90	mm			6	.706	1	
相当平歯車歯数	ZV	mm		24	.9490		335	9.7016
円すい頂点~外端歯先	xo, Xo	mm		40	.0067		11	0.2414
外端法線バックラッシ	BL	mm			0	.0001)	
正面かみ合い率	εα	mm			0	. 4201)	
重なりかみ合い牢	εβ	mm			1	.302	1	
総合かみ合い率	εγ	mm			1	.368	1	
ツースアングル	ta	min		211	.4092		20-	4.1214
素材の角度	θ×	deg	88 *	47	4.6	84	34	32.5
素材の角度	θy	deg	81 *	59	42.3 "	8	28	50.3

×

28 2418

11.7582

-4.6040

-5.0223

-4.6039

8.6560

]21.4 寸法結果 2
141.4 114/11/11/11/11/11/11/11/11/11

記号 単位

deg

mm

mm

m 1

Φ2

7

Go, Zo

GR, ZR mm

xi,Xi

Pinion

11 7582

28.2418

21.8715

42.8478

25.2616

21.4 組図

Σ

項目

凹面圧力角

凸面圧力角

ビッチ円すい頂点の位置

歯先円すい頂点の位置

歯底円すい頂点の位置

円すい頂点~内端歯先

図21.5~21.8のように組立距離やボス径を設定し作図すること ができます. 作図機能として拡大,距離計測などがあり,図21.6 で面取り加工を「する」にすると端部に面取りを与えた形状とす ることができます.図21.7に軸角60°を、図21.8に軸角160°の組図 例を示します.

21.5 精度

図21.7 軸角Σ=60°の例

図21.9に、かさ歯車の精度(JIS B 1704:1978)を示します.

74.990

Σ=160°の例

図21.8

∑ 秸度 [JIS B 1704]				- • ×
項目	記号	単位	Pinion	Gear
精度等級			3 ~	3 ~
単一ビッチ誤差(±)	ft	μm	24	0
隣接ビッチ誤差	ftu	μm	31	2
累積ビッチ誤差(±)	Ft	μm	97	3
歯溝のふれ	fr	μm	33	5
	5. Ib	ما جا جا		(<u>6</u>

図21.9 かさ歯車精度(JIS B 1704)

21.6 軸受荷重

歯と軸受に作用する荷重の計算をします. 図 21.10 に歯に作用 する荷重の方向と軸受位置の参考図を示します.

図 21.10 軸受荷重

21.7 歯形

歯形を生成するために図21.11の歯面や歯すじ分割数と歯すじ 曲線の種類を選択し、最後に歯すじ基準をピニオンとするかギヤ とするかを選択します.そして、歯すじの種類は、「円弧」、「イン ボリュート」、「エピトロコイド」、「等リード」を選択することが できます.指定した歯形は、ベベルギヤカタログの図2.12のよう に球面インボリュートであり、歯元は球面トロコイド曲線です.

21.8 歯形, 歯すじ修整

歯形修整,歯すじ修整をする場合,図21.12~21.15に示すように 修整を与えることができます.図21.14では修整する指定点数(最 大=50)を入力することができ,図21.15のように円弧パターンで 入力することもできます.

歯形断面分割を5,歯すじ1としたときの修整とトポグラフの例 を図21.16に示します.トポグラフでは、歯形と歯すじの分割数を それぞれ最大50まで設定することができます.

図21.16 歯形・歯すじ (バイアス) 修整とトポグラフの例

21.9 歯形レンダリング

歯形レンダリングを図21.17に示します. コントロールフォーム で歯車の表示角度を変更でき,図の大きさを変えることもできま す.また,歯面修整(図21.12)を施したときの歯面接触を確認す るため背面から観察した歯形を図21.18に示します.ここでは,ピ ニオンを「水平」,「垂直」に移動することができますので誤差を 与えたときのかみ合い接触線を容易に把握することができます.

図 21.18 歯形レンダリング(歯面修整歯形)

21.10 歯当たり (オプション)

歯形・歯すじ修整を与えた歯車(無修整歯形を含む)の歯当たりを表示することができます.図21.19の歯当たり設定では取り付け誤差,接触最大クリアランス(光明丹厚さ)を設定することができます.例として図21.12の修整を与えたときの歯当たりを図21.20に示します.

21.11 伝達誤差解析

図21.18の歯形で無負荷における回転伝達誤差解析を行った例 を以下に示します.取り付け誤差を図21.21のように与え,ピニオ ンのピッチ偏差を0µmとしたときの伝達誤差,ワウ・フラッタ, フーリエ解析の計算結果を図21.22~21.24に示します.図21.23の ワウ・フラッタではこのグラフ波形を音で確認することができま す(グラフ右上の Sound ▶).

ピッチ偏差の設定は最大値で入力することも歯の偏差を個々に 入力することもできます(説明省略).

図21.22 伝達誤差結果, TE=0.86µm

CSV File <

21.12 バックラッシ変化

図21.18の歯車のバックラッシの変化は図21.25のように解析す ることができ、キックアウトは0.4µmであることが解ります.

図21.25 バックラッシ変化

21.13 歯車強度計算(AGMA 2003-B97)

歯車の強度は、AGMA 2003-B97:1997 に基いて計算します. ここ では図21.2の歯車についての強度計算例を図21.26~21.32に示し ます.また、動力とトルクの関係の補助機能画面を図 21.26 に示 します.

図 21.26	強度諸法

∑ 強度諸元 [ANSI/AGMA 2003-B97]									
諸元 材料									
項目	記号	単位	Pi	nion	(lear			
材料名			鋼		鋼				
材料記号				SCM420		SCM420			
熱処理			焼き入れ焼き戻し ~		戻し ~ 焼き入れ焼き戻				
硬度			BHN 60.0		BHN	60.0			
許容曲げ応力	σ Flim	MPa		180.0	380.0				
許容面圧応力	σ Hlim	MPa	18	1380.0 1380.0		380.0			
材料の弾性率	ZE	√ [™] MPa		190	.0				
縦弾性係数	E1, 2	MPa	207000.0 207000.0			000.0			
材料組み合わせ選択									
確定 キャンセル クリア									

図 21.27 材料設定

項目	記号	単位	数	値		
歯数比	mG		4.714			
周速	vet	m/s	1	.140		
動荷重係数	Κv		1	.098		
荷重分配係数	KH 🕫		1.001			
歯 面 曲げ(Pinion	凹)曲	げ(Pinion)	凸) 寿 命			
項目	記号	単位	Pinion	Gear		
寸法係数	Zx		0.500			
歯すじ修正係数	Zxc		1.500			
幾何係數	ZI		(0.098		
応力繰り返し係数	ZNT		1.320	1.449		
硬さ比係数	ZW		1.000			
歯面応力	σH	MPa.	2118	1.292		
許容接触応力	σHP	MPa.	1821.096	1999.275		
許容伝達動力(単位)	Pazu	k₩	3.430	4.134		
許容伝達動力	Paz	k₩	2.217	2.672		
歯面強さの余裕率	SFc		1.143	1.378		
				幾何係数 I		

図 21.28 強度計算結果(面圧)

項目	記号	単位	数 値			
歯数比 mG			4	4.714		
周速	vet	m/s	1	1.140		
動荷重係数	Κv		1	1.098		
荷重分配係数	KH 🖉		1	1.001		
歯 面 曲げ(Pinion	凹)曲	f(Pinion	凸) 寿 命			
項目	記号	単位	Pinion	Gear		
寸法係数	YX		0.508			
歯すじ曲線係数	Yβ		1.000			
応力繰り返し係数	YNT		1.018	1.084		
幾何係數	YJ		0.212	0.170		
曲げ応力	σF	MPa	228.930	340.161		
許容曲げ応力	σFP	MPa	386.705	411.745		
許容伝達動力(単位)	Payu	k₩	5.287	3.631		
許容伝達動力	Pay	k₩	4.251	3.631		
曲げ強さの余裕率	SFt		1.762	1.210		
				耕(町(玄墨))		

図 21.29 強度計算結果(曲げ:ピニオン凹)

∑ 強度結果 [ANSI/AG	MA 2003-	B97]				
項目	記号	単位	敖 値			
歯数比	mG		4.714			
周速	vet	m/s	1.140			
動荷重係数	Кv		1.098			
荷重分配係数	KH /S		1.001			
歯 面 曲げ(Pinion	凹) 曲	f(Pinion	凸)寿命			
(ち姫面歯)目頂	記号	単位	Pinion	Gear		
予想寿命係数	CL		1.535	1.535		
予想寿命負荷回数	N	cycs	8.117E+05	8.117E+05		
予想寿命時間	L	hrs	1.353E+01	6.378E+01		
項目(曲げ強さ)	記号	単位	Pinion	Gear		
予想寿命係数	KL		0.602	1.082		
予想寿命負荷回数	N	cycs	6.177E+19	2.151E+06		
予想寿命時間	L	hrs	1.030E+15	1.690E+02		

図 21.30 寿命計算結果

Geometry factor [ANSI/AGMA 2003-B97]				
Geometry factor I Geometry factor J (Pinion Cond	ave) Geo	metry fact	tor J (Pinion Convex)
Item	Symbol	Unit	Pinion	Gear
Geometry factor for Pitting resistance	ZI		0.	.098
Mean cone distance	Rm	mm	35.	.381
Addendum angle	θ ct 1,2	deg	5.152	1.283
Mean addendum	ham1,2	mm	3.054	0.377
Location constant	k'		0.	. 195
Mean transverse diametral pitch	Pm	mm	0.	. 472
Outer transverse circular pitch	Pe	mm	7.	.854
Mean normal base pitch	Pmbn	mm	5.	.448
Mean normal circular pitch	Pmn	mm	5.	.797
Mean transverse pitch radius	rmpt1,2	mm	9.324	237.287
Mean normal pitch radius	rmpn1,2	mm	12.316	313.432
Mean normal base radius	rmbn 1,2	mm	11.573	294.529
Mean normal outside radius	rmne 1,2	mm	15.370	313.809
Length of mean normal addendum action	¢αn1,2		5.902	1.098
Length of action in mean normal section	ean		7.000	
Transverse contact ratio	εα		1.009	
Intermediate variable	Kz		0.369	
Face contact ratio	εβ		1.	.095
Modified contact ratio	03		1.	. 489
Mean base spiral angle	,β mb	deg	27.	.591
Length of action within the contact ellipse	eη	mm	8.035	
Mean normal profile radius of curvature at pitch	,0 m 1,2	mm	4.060	103.322
Assumed locations of critical point on tooth for	уI		-1.	.557
	eηI	mm	7.407	
Distance along path of action in mean normal se	gyo		2.	.390
Profile radius of curvature at point fI	ρ1,2	mm	6.450	100.932
Relative radius of profile curvature	ρyo	mm	6.	.062
Length of the line of contact	ec.	mm	9.	.004
Inertia factor	Zi		1.	.343
	e'ηI	mm	7.	. 455
Load sharing ratio	εNI		0.	.981

図 21.31 幾何係数(I)

Geometry factor [ANSI/AGMA 2003-B97]							
Geometry factor I Geometry factor J (Pinion Cond	ave) Geo	metry fact	tor J (Pinion Convex)			
Item	Symbol	Unit	Pinion	Gear			
Geometry factor for bending	YJ1,2		0.212	0.170			
Mean dedendum	hfm1,2	mm	0.818	3.357			
Assumed locations of critical point on tooth for	уJ		1.	.430			
Length of action within the contact ellipse	೯೧	mm	7.	.508			
Determination of point of load application for max	y3		5.281	3.424			
Distance from mean section to center of pressure	eoĩ	mm	-0.068	3.216			
Sum of gear and pinion mean normal pitch radii	Σrmpn	mm	325.	.748			
Normal pressure angles at point of load applicati	αL1,2	dee	35.957	19.573			
One half of angles subtended by normal circular	ζh1,2	deg	4.680	0.215			
Normal pressure angles at point of load applicati	∞h1,2	deg	31.277	19.359			
Distances from pitch circle to point of load appli	⊿ryo1,2	mm	1.225	-1.252			
Tool or cutter tip edge radii used to produce	/2 ao 1,2	mm	0.600	0.600			
Tooth fillet radii in mean section at the tooth root	rmf1,2	mm	0.604	0.624			
Tooth strength factor	XN1,2		2.268	2.095			
Tooth form factors excluding stress concentra	Y1.2		0.770	0.640			
Stress concentration and stress correction factor	Yf 1,2		2.061	2.045			
Empirical constant used in stress correction for	н		0.180				
Empirical exponent used in stress correction for	L		0.150				
Empirical exponent used in stress correction for	м		0.	. 450			
Tooth form factors for gear and pinion	YP,YG	mm	0.374	0.313			
	€ ກ J		7.	.508			
Load sharing ratio	εNJ		1.	.000			
Inertia factor	Yi		1.	.343			
Projected length of instantaneous line of contact	gK	mm	8.	.089			
Toe increments of face width (effective)	⊿b'i1,2	mm	3.940	6.318			
Toe increments of face width	⊿bi1,2	mm	3.940	5.242			
Heal increments of face width (effective)	⊿b*e1,2	mm	4.096	-1.076			
Heal increments of face width	⊿be1,2	mm	4.096	0.000			
Effective face width	b'1,2	mm	11.973	10.002			

図 21.32 幾何係数 (J:ピニオン凹)

21.14 歯面評価

強度計算終了後,図 21.33 の歯面評価グラフ設定画面で歯形修 整の有無,駆動歯車の種類,計算ポイント数を入力するとすべり 率グラフ(図 21.34)とヘルツ応力グラフ(図 21.35)を表示しま

21.15 FEM 歯形応力解析

図21.36に示すFEM解析の設定画面で縦弾性係数,ポアソン比, 分割数および荷重位置そして荷重を入力することにより5種類の 応力(σx,σy,せん断応力τ, 主応力σι,σ2)を計算します. 歯車強 度計算と共に歯に作用する実応力を評価する事ができますので歯

∑ FEM解析諸元 🛛 🗖 🖉 📈				
項目	記号	単位	Pinion	Gear
計算位置			中	央 ~
材料記号			SCM420	SCM420
縦弾性係数	E	MPa	207000.0	207000.0
ポアソン比	ν		0.30	0.30
縦分割数(歯面部)	mNO		21	21
横分割数	wNO		21	21
荷重点位置	Nf		2	2
荷 重	F	N	5384.1338	
かみ合い歯面			左歯面 ~	
確定 キャンセル 標準値				

図 21.36 FEM 解析の設定

車強度の信頼性を高めることができます. 図 21.37 および図 21.38 にピニオンとギヤの最大主応力 の を示します.

21.16 歯形データ出力

歯形・歯すじ修整を与えた歯形(無修整歯形を含む)をCADデ ータで出力することができます.図21.39で歯形ファイル条件を設 定し,図21.40および図21.41のように3D-IGESファイルを出力する ことができます.

21.17 歯形測定データ出力(オプション)

三次元測定機 (Carl Zeiss) 用測定データを出力します. 出力方法は, [2] involute Σ iii (bevel gear design)の図 2.39 測定データの設定 (Carl Zeiss) と同じです.