[58] 3K 遊星歯車設計システム

図 58.1 3K 遊星歯車

58.1 概要

3K 遊星機構は、ロシアのクドリヤフツエフ(Kyqpявцев)や信 州大学の両角宗晴教授が 50 年前に発表している遊星歯車機構で あり低減速から高減速比を得ることができる遊星歯車機構ですが、 歯数の配分や転位係数の調整で効率を良くすることができるため 逆駆動機構として使用されることも増えています.本ソフトウェ アでは、速比から歯数を決める機能があり、更に、すべり率、か み合い率、効率のグラフと共に転位係数の変化に伴う歯形のかみ 合いや干渉チェックも把握しながら転位係数を簡単に決めること ができます.

58.2 プロパティ

基準ラックを図 58.2 で設定します.基準ラックの□にチェック を入れると基準ラックの実寸法図を表示することができます.こ こでは、並歯としたときの例を示します.また、遊星歯車の寸法 設計基準を中心距離またはモジュールを基準とするのかを選択し、 平均摩擦係数を設定します.

58.3 歯車諸元

図 58.3 の歯車諸元の設定の **歯車の入出力と固定** で遊 星歯車のタイプを選択します.ここでは、図 58.4 の同方向減速を 選択したときの例を示します.次に、遊星ピニオンの個数を入力 し、歯数を入力しますが、歯数を直接入力することもできますし、 図 58.5 の歯数組み合わせ機能を使用して歯数を決定することもで きます.図 58.5 でピニオン個数、ギヤ比の範囲、歯数の上下限値 を入力後、**歯数検索**を押すと歯数の組み合わせを高効率の順に 表示します.そして、本例では、歯数の組み合わせ番号の1を選

択します.

歯数を図 58.3 のように決定した後は、ねじれ角を入力し転位係 数を決定し(後述)、歯先円直径や歯底円直径を入力しますが、 [TAB]を押すことで標準値を入力することができます.

畜車の人出:	りと固	更	1-a型同方[可順速:サンキヤ。	人力、リンクキヤ1	固定、リンクキヤ	2出力		
項目	記号	単位	サンギヤ	「サンギヤ」」 ピニオン1 「リングギヤ1 」 ピニオン3					
入出力			入力		固定		出力		
歯車の個数	N		1	8	3	1			
歯 数	z		20	49	40	109			
圧力角	αn	deg		20.00000	20.	00000			
ねじれ角	β	deg	25 *	0 '	0 ")	25 * 0	' 0 '		
ねじれ方向			右ねじれ 〜	左ねじれ	左ねじれ	右ねじれ ~	右ねじれ		
モジュール	III	nm		1.00000	1.1	00000			
中心距離	a	nm		38.06654					
速比	i				(59.344)				
転位係数	xn		0.00000	0.00000	0.00000	0.00000	0.00000		
理論中心距離	a	nm	38.06654		38.06654	38.	06654		
法線歯厚減少量	fn	nm	0.04000	0.05100	0.06600	0.04800	0.06400		
歯先円直径	da	800	24.06756	56.06552	128.19859	46.13512	118.26819		
歯底円直径	df	nm	19.56756	51.56552	132.69859	41.63512	122.76819		
歯先R	ra	nm	0.00000	0.00000	0.00000	0.00000	0.00000		
歯元R	rf	nm	0.37500	0.37500	0.37500	0.37500	0.37500		
歯幅	b	nm	15.00000	15.00000	15.00000	15.00000	15.00000		
測定ビン径	dp	800	1.7100	1.6870	1.6660	1.6900	1.6650		

図 58.4 3K 遊星歯車機構のタイプの選択

転位係数の決め方は、図 58..3 の右下の 転位変化 を押すこと で図 58.6~58.10 のグラフや図を表示します. 画面下のスライドバ ーを移動することで転位係数を 0.025 ステップの値と歯形を表示 します. 効率を基準として転位係数を決定する場合は、図 58.10 の 右下に表示する効率を参考にしてスライドバーを移動してくださ

い

図 58.8 転位係数 (歯形)

図 58.9 転位係数 (TIF)

図 58.10 転位係数 (効率)

図 58.6~58.10 で決めた転位係数を採用する場合は,転位係数選 択画面の[確定]で決めることができ図 58.11 のように歯車諸元入 力画面に転位係数が入力されます.

図 58.11 の歯車諸元を[確定]すると図 5812~58.15 のように歯車 寸法,歯厚,かみ合い値,そして,干渉やかみ合い効率(96.6%) の計算結果を表示します.なお,図 58.15 の最小直径干渉で「発生 している」と表示しているのは,内歯車の第4の干渉です.詳細 は,58.4 歯形図で説明します.

= 歯車の入出:	力と固	定	I-a型同方向	司減速:サンギヤ	入力、リングギヤ1	固定、リングギヤ	2出力
項目	記号	単位	サンギヤ	ピニオン1	リングギヤ1	ピニオン2	リングギヤ2
入出力			入力		固定		出力
歯車の個数	N		1	3	1	3	1
歯数	z		20	49	118	40	109
圧力角	αn	deg		20.00000	*	20.0	00000
ねじれ角	β	deg	25 *	0 '	0 "	25 0	' 0 "
ねじれ方向			右ねじれ 〜	左ねじれ	左ねじれ	右ねじれ ~	右ねじれ
モジュール	m	nm		1.00000	-	1.0	00000
中心距離	a	nm			38.06654		
速 比	i				0.01685 (1 /	(59.344)	
転位係数	xn		-0.02500	0.02500	0.02500	0.12500	0.12500
理論中心距離	a	nm	38.06654		38.06654	38.0	06654
法線歯厚減少量	fn	nm	0.04000	0.05100	0.06600	0.04800	0.06400
歯先円直径	da	nm	24.01756	56.11552	128.24859	46.38512	118.51819
歯底円直径	df	nm	19.51756	51.61552	132.74859	41.88512	123.01819
歯先R	ra	nm	0.00000	0.00000	0.00000	0.00000	0.00000
歯元R	rf	nm	0.37500	0.37500	0.37500	0.37500	0.37500
歯幅	b	nm	15.00000	15.00000	15.00000	15.00000	15.00000
測定ピン径	dp	mm	1.70300	1.68900	1.66700	1.70800	1.67000

図 58.11 歯車諸元 (転位係数確定)

	- v ·	тач, ж	帅半				
項目	記号	単位	サンギヤ	ピニオン1	リングギヤ1	ピニオン2	リングギヤ2
正面圧力角	αt	deg		21.88023		21.	88023
基礎円筒ねじれ角	βb	deg		23.39896		23.	39896
正面法線ビッチ	Pbt	nn		3.2167		3.	2167
歯直角法線ビッチ	Pbn	nn		2.9521		2.	9521
リード	pz	nn	148.6728	364.2484	877.1697	297.3457	810.2669
基礎円直径	db	nn	20.4779	50.1709	120.8197	40.9558	111.6047
基準円直径	d	nn	22.0676	54.0655	130.1986	44.1351	120.2682
最小有効直径(TIF)	dt	nn	20.6568	52.3357	128.2486	42.6032	118.5182
最大有効直径	dh	nn	24.0176	56.1155	132.3037	46.3851	122.5756
歯末のたけ	ha	nn	0.9750	1.0250	0.9750	1.1250	0.8750
歯元のたけ	hf	nn	1.2750	1.2250	1.2750	1.1250	1.3750
全歯たけ	h	nn	2.2500	2.2500	2.2500	2.2500	2.2500
転位量	×m	nn	-0.0250	0.0250	0.0250	0.1250	0.1250
歯切り転位係数	xnc		-0.0835	-0.0496	0.1215	0.0548	0.2186
歯車歯末たけ係数	ha'c		0.9750	1.0250	0.9750	1.1250	0.8750
歯車歯元たけ係数	hf'c		1.2750	1.2250	1.2750	1.1250	1.3750
基準うり歯末たけ係数	hac'		1.0585	1.0746	1.0965	1.0702	1.0936
基準かり歯元たけ係数	hfc'		1,1915	1.1754	1,1535	1.1798	1,1564

図 58.12 歯車寸法

寸法 「歯厚」 かみ	合い	干涉,刘	h平									
項目	記号	単位	サンギヤ		ピニオン1		リングギヤ1		ピニオン2		リングギヤス	ş
歯直角円弧歯厚	sn	nn	1.5100		1.5347		1.4824		1.6107		1.4117	
正面円弧歯厚	st	nn	1.6661		1.6934		1.6356		1.7772		1.5576	
またぎ歯数	ZN		8	÷	8	÷	18	-	7	-	17	
基準またぎ歯厚	ų.	nn	7.7337		23.0658		53.8654		20.0154	L I	50.8150	
設計またぎ歯厚	Ψ'	nn	7.6937		23.0148		53.9314		19.9674		50.8790	
測定ビン径	dp	nn	1.7030		1.6890		1.6670		1.7080		1.6700	
基準オーバーピン寸法	dn	nn	24.3415		56.3757		128.0170		46.7202		118.2661	
設計オーバービン寸法	dn'	nn	24.2382		56.2355		128.2139		46.5933		118.4554	ï
キャリパ歯たけ	hj	nn	0.9974		1.0346		0.9724		1.1378		0.8725	
基準キャリバ歯厚	Sj	nn	1.5517		1.5888		1.5526		1.6615		1.4798	
設計キャリバ歯厚	Si'	nn	1.5093		1.5346		1.4751		1.6105		1.4046	

図 58.13 歯厚

」法 田厚 (1) (5) 日	い] Ŧ	涉, 効 率	R					
項 🛯	記号	単位	サンギヤ	Ľ	וע	リングギヤ1	ピニオン2	リングギヤ2
正面かみ合い圧力角	avt	deg	21.	88024	21	.88024	21.	88024
かみ合い円筒ねじれ角	βw	des	25.	00000	25	5.00000	25.	00000
かみ合いビッチ円直径	dv	nn	22.0676	54.0655	54.0655	130.1986	44.1351	120.2682
有効歯幅	bv	nn	15.	0000	18	5.0000	15.	0000
クリアランス	ck	nn	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500
かみ合い長さ	şa	nn	4.	6569	Ę	5.1200	5.	0218
近寄りかみ合い率	εα1		0.	7753	(0.8164	0.	7329
遠のきかみ合い率	ε α 2		0.	6724	(0.7753	0.	8282
正面かみ合い率	εα		1.	4477		.5917	1.	5612
重なりかみ合い率	εβ		2.	0179	1	2.0179	2.	0179
全かみ合い率	εγ		3.	4656	1	3.6095	3.	5790
すべり率(歯先側)	σa		0.4854	0.6846	0.1160	0.1709	0.1549	0.2028
すべり率(歯元側)	σf		-2.1704	-0.9432	-0.2062	-0.1313	-0.2544	-0.1833
正面法線方向バックラッシ	jnt	nn	0.	0992	(1.1275	0.	1220
バックラッシ角度	jθ	des	0.55486	0.22647	0.29117	0.12091	0.34144	0.12530
入力軸総ドックラッジ角度	Σjθ	deg		0.0	0000 (Ring)			
最大接触直径	dja.	nn	24.0176	56.1155	56.1155	132.1385	46.3851	122.3539
最小接触直径	djf	nn	20.7320	52.6068	52.3357	128.3339	42.6032	118.5917

図 58.14 かみ合い

🔞 歯車寸法結果							- • ×
寸法 歯厚	かみ合い	干涉,効率]				
効率						相マーク位置	
0.96	3619					ピニオン番号	位置[deg]
-リングギヤヨ	F渉					1	0.0000
項	E	リングギヤ	71		ノグギヤ2	2	-120.0000
インボリョ	レート干渉	生しない	3	-240.0000			
1001	ド干渉	発生しな	ί1 (発	生しない		
F U 3	こング	発生しな	ί1 (発	生しない		
最小直	径干渉	発生する	5	9	性する		
回転比							
サンギヤ	ピニオン1	リングギヤ1	ピニオ	シ2	リングギヤ2		
入力		固定		-	出力		
1.0000	-0.2041	0.0000	-0.	2041	0.0169		

図 58.15 干渉, 効率

58.4 歯形

図 58.11 で確定した歯車の歯形を生成するため図 58.16 の条件 で計算します.

歯車のかみ合いを図 58.17 のように 2 次元図で表示します.操作画面によって、補助円や共通法線を表示することができますので歯面の接触位置の確認が容易です.歯車の回転角度を変え、拡大表示することもできます.また、画面下のスライドバーで歯車を自公転させることができます.

図 58.15 の最小直径干渉は、図 58.20 のように内歯の歯先がピニ オンの歯元と干渉 (1µm) していることがわかります. これは、歯 先 R=0.03mm を与えることで解消します.

図 58.17 歯形図

図 58.18 かみ合い図 (太陽と第1 ピニオン)

図 58.19 かみ合い図 (ピニオンと内歯)

図 58.20 ピニオン 2 と内歯 2 のかみ合いと干渉

58.5 レンダリング

歯車のかみ合いを図 58.21 のように 3 次元図で表示することが できます.また,コントロールフォームで観察角度の変更や歯車 を自公転させることができます.

図 58.21 レンダリング

58.6 歯形ファイル出力

生成した歯形は、図 58.22 の歯形ファイル出力で出力できます. 3D-IGES の場合、歯形を一体型と分割型を選択することができ分 割型の場合は歯元フィレット部、インボリュート歯面、歯先 R、 歯先部に分割して出力します. 図 58.23 および図 58.24 に CAD 作 図例を示します.

58.7 歯面修整

歯面修整は、(1)歯形修整、(2)歯すじ修整、(3)歯面歯すじ修整、 そして(4)データ読み込みの機能があり、ここでは、歯形修整の例 を図 58.25 に示します. この歯形を得るためには図 58.26 で「歯 形」を選択すると図 58.27 のように歯形修整を数値入力で与える こともできますが、右側の図のようにパターン化した歯形に数値 を入力して与えることもできます.また、図 58.28 のように外部 で作成した csv ファイルを読み込む機能もあります.

修整歯形を施した歯形は、図 58.29 のように確認することができます.

図 58.29 レンダリング (理論歯形と修整歯形)

58.8 強度計算

図 58.30 の強度諸元設定画面と図 58.31 で、金属材料と樹脂材料 を選択することができます. 鋼材料の場合、図 58.32 のように許 容応力の oFlim と oFlim を表中から選択することができます.また、 樹脂材料も任意材料(オプション)で設定することができます. 図 58.33 に入力した材料一覧を示します.トルク単位は「N・m」、 「N・cm」、「kgf・m」、「kgf・cm」、「gf・cm」から選択することが でき、トルク、回転速度は入力側、出力側のどちらでも入力可能 です.

強度計算結果画面を図 58.34 および図 58.35 に示します. 強度計算は効率やかみ合い率を考慮し,鋼歯車は JGMA401-01:1974, JGMA401-02:1975 に基づき強度計算を行い,樹脂材料の応力値は,温度,寿命などを考慮した材料の実験値を採用しています.

🕐 強度計算諸元							- • •		
項目	記号	単位	サンギヤ	ピニオン1	リングギヤ1	ピニオン2	リングギヤ2		
材料			SCH420 🔳	SCM420	SCM420 📃	SCM420 📃	SCM420		
トルク	T	N•m 🗸	5.0000 📃	117.1515 📃	281.6910	117.1515 📃	286.6910		
回転速度	n	nin-1	3000.0000	612.2449	0.0000	612.2449	50.5523		
相対回転速度	nj	min-1	2565.2174	1047.0275	434.7826	1282.6087	470.6821		
軸受け支持方法					両軸受けに対称				
寿命繰り返し回数	L		1000000	4081633	1694915	5000000	1834862		
歯車の回転方向					正転のみ				
周速(相対)	¥	m/s	2.9640	2.9640	2.9640	1.0047	8.0769		
混淆方法					油槽				
温度	t	*0	60.0000						
歯形修整			無し	~	無し ~	無	U		
歯面組さ	Rnax	μn	6.0000	6.0000	6.0000	6.0000	6.0000		
負荷時の歯当たり状況					良好				
材料定数係数	ZM	√"MPa.	189.8	189.8	189.8	189.8	189.8		
潤滑油係数 📃	ZL		1.0000	1.0000	1.0000	1.0000	1.0000		
過負荷係数 📃	Ko		1.0000	1.0000	1.0000	1.0000	1.0000		
歯元曲げ安全率	SF				1.2000				
歯面損傷安全率	SH		1.1500						
荷重分配率	Tf		1.0000						
材料一覧			確定	キャンセル			<i>b</i> IJም		

図 58.30 強度諸元入力

🔞 材料選択					×	会居材料
種	預		金属	财料	~	金属材料 🗸
項	B		ታጋ	ノギヤ		個脂材料 任意材料
熱処	理	ž	夏炭烤	き入れ	\sim	
材料語	2号		SC	1420	\sim	
心部和	更度	HV	\sim	305		
表面研	更度	HV	\sim	720		
σFlim	MPa		4	41.500		
σHlim	MPa		13-	43.500		
	確定	キャン	211		קול	
1						

図 58.32 材料選択

) 材料一覧							-
項目	記号	単位	サンギヤ	ピニオント	リングギヤ1	ピニオン2	リングギヤ2
種類			金属材料	金屬材料	金属材料	金属材料	金属材料
材料記号			SCM420	SCM420	SCH420	SCM420	SCM420
熱処理			浸炭焼き入れ	浸炭焼き入れ	浸炭焼き入れ	浸炭焼き入れ	浸炭焼き入れ
心部硬度			305(HY)	305(HV)	305(HV)	305(HV)	305(HV)
表面硬度			720(HV)	728(HV)	720(HV)	720(HV)	728(HY)
₩30倍率		\times M90	###803	****	83844	888008	****
温度	ŧ	10	###808	****	83844	888008	****
ヤング率	E		###888	*****	88884	\$\$500	****
許容曲げ応力	σFlin	HPa	441.5000	441.5000	441.5000	441.5000	441.5000
許容ヘルツ応力	σHlin	HPa	1343.5000	1343.5000	1343.5000	1343.5000	1343.5000

図 58.33 材料一覧

全結果	~						
げ強さ 歯面強	đ						
項目	記号	単位	サンギヤ	ピニオン1	リングギヤ1	ピニオン2	リングギヤ2
許容曲げ応力	σFlim	MPa	441.5000	441.5000	441.5000	441.5000	441.500
有効歯幅	b'	nn	15.0000	15.0000	15.0000	15.0000	15.000
歯形係数	YF		2.7286	2.3592	2.0650	2.8441	2.065
荷重分布係数	Yε		0.6907	0.6907	0.6283	0.6405	0.640
ねじれ角係数	Yβ		0.7917	0.7917	0.7917	0.7917	0.791
寿命係数	KL		1.0000	1.0000	1.0000	1.0000	1.000
寸法係数	KF×		1.0000	1.0000	1.0000	1.0000	1.000
動荷重係数	Κv		1.1964	1.1964	1.1964	1.0005	1.401
速度補正係数	KVo		88888	306668	8899*	*****	******
温度係数	KT		88888	306668	8899*	*****	******
澗滑係数	KLo		****	306668	88999	*****	******
材質係数	KH		****	****	88999	***888	300000
呼び円周力	Ft	N	151.0513	1444.5622	1442.3659	1769.5887	1589.176
許容円周力	Ftlim	N	3091.5095	3575.5138	4491.1972	4640.6280	3759.294
曲げ強さ	Sft		20.4866	2.4752	3.1138	2.6224	2.365
歯元曲げ応力	σF	MPa.	21.5717	178.3727	141.7895	168.3551	186.636

図 58.34 強度計算結果(曲げ)

全結果	~						
曲げ強さ 歯菌強	3 7)						
項目	記号	単位	サンギヤ	ピニオン1	リングギヤ1	ピニオン2	リングギヤ2
許容ヘルツ応力	σHlim	MPa	1343.5000	1343.5000	1343.5000	1343.5000	1343.500
有効歯幅	bv	nn	15.0000	15.0000	15.0000	15.0000	15.000
領域係数	ZH		2.3038	2.3038	2.3038	2.3038	2.303
材料定数係数	ZH	√ MPa.	189.8000	189.8000	189.8000	189.8000	189.800
かみ合い率係数	Zε		0.8311	0.8311	0.7926	0.8003	0.800
寿命係数	KHL		1.0000	1.0000	1.0000	1.0000	1.000
粗さ係数	ZR		0.9261	0.9261	0.9261	0.9261	0.926
湄滑速度係数	Z¥		0.9739	0.9739	0.9739	0.9739	0.973
硬さ比係数	ZV		1.0000	1.0000	1.0000	1.0000	1.000
荷重分布係数	KHβ		1.0000	1.0000	1.0000	1.0000	1.000
動荷重係数	Kν		1.1964	1.1964	1.1964	1.1964	1.196
弾性係数	E	MPa.	88888	******	88333	*8888	Holololek
呼び円周力	Fc	N	151.0513	1444.5622	1442.3660	1769.5887	1589.176
許容円周力	Felim	N	1651.6675	1651.6675	10713.8613	7924.0320	7924.032
歯面強さ	Sfc		10.9345	1.1434	7.4280	4.4779	4.986
ヘルツ応力	σH	MPa.	406.2923	1256.4479	492,9495	634,8933	601.659

図 58.35 強度計算結果(歯面)

58.9 歯面評価

歯面評価では、すべり率、ヘルツ応力、油膜厚さ、接触温度、 すべり速度、すべり速度図を表示します.これらの計算結果は、 歯面修整には適応していません.また油膜厚さ、接触温度(歯車 温度+フラッシュ温度)は、AGMA2001-C95,AnnexAに基づく計 算結果です.そのため歯面修整量や荷重分担などを考慮した厳密 な解析は[45]CT-FEM Opera iiiをお使いください.

図 58.36 の油の種類は、鉱物油、合成油を選択でき ISO グレードも選択(任意設定可)することができます.また、摩擦係数は、一定値、ISO、AGMA 方式の中から選択することができます.

図 58.37~58.42 に、すべり率、ヘルツ応力グラフ等を示します が、横目盛はロールアングルと作用線長さの切り換えができます. また、図 58.39 の油膜厚さから摩耗の発生確率を図 58.40の接触温 度からスカッフィングの発生確率を計算します.

図 58.36 歯面評価 (設定)

58.10 高減速比の設計例

図 58.3 では速比は i=59.3 の例を示しましたが、ここでは、速比 を i=105.4 の例を示します. 歯数の選定は図 58.5 で求め転位係数 の決定は、図 58.10 の効率を基準に決定しています. 図 58.43 の歯 車諸元では、減速時の効率は $\eta=98.01\%$ であり逆駆動時(図 58.4 で同方向増速)の効率は、 $\eta=97.99\%$ です.

🛞 歯車諸元							- • ×
歯車の入出;	カと固	定	I-a型同方	向減速:サンギヤ	入力、リングギヤ1	固定、リングギヤ	2出力 🛄
項目	記号	単位	サンギヤ	ピニオン1	ピニオン2	リングギヤ2	
入出力			入力		固定		出力
歯車の個数	N		1	3	1	3	1
歯 数	z		21	96	213	79	196
圧力角	αn	deg		20.00000	20.	00000 *	
ねじれ角	β	des	25 *	0 '	0 "	25 * 0	'_0 ″
ねじれ方向			右ねじれ 〜	左ねじれ	左ねじれ	右ねじれ 〜	右ねじれ
モジュール	mn	mm		1.00000		1.	00000
中心距離	a	mm					
速比	i				0.00949 (1 ,	(105.412)	
転位係数	xn		0.12500	-0.12500	-0.12500	0.15000	0.15000
理論中心距離	a.	mm	64.54761		64.54761	64.	54761
法線歯厚減少量	fn	mm	0.02000	0.03000	0.04000	0.03000	0.03000
歯先円直径	da	mm	25.42094	107.67428	233.20000	89.46686	215.00000
歯底円直径	df	mm	20.92094	103.17428	237.26950	84.96686	219.06207
齿先R	ra	mm	0.00000	0.00000	0.00000	0.00000	0.00000
歯元R	rf	mm	0.37500	0.37500	0.37500	0.37500	0.34260
歯幅	Ь	mm	20.00000	20.00000	20.00000	20.00000	20.00000
測定ピン径	dp	mm	1.74400	1.67300	1.66500	1.69200	1.67100
組図				確定 キャン	也ル	<u>ل</u> و	ア 転位変化

図 58.43 歯車諸元(高減速の例)

図 58.44 レンダリング (*i*=105.4 の例)

※ [5]遊星&不思議遊星と[49]遊星歯車の起振力解析ソフトもご 覧ください.

※ ステップドピニオン式遊星歯車は、 [54]をご覧ください.