[49] 遊星歯車機構の起振力解析システム

図 49.1 遊星歯車機構の起振力解析システム

49.1 概要

遊星歯車機構の起振力は、歯数の組み合わせや位相の影響を受 けるため、間違った歯数の組み合わせとした場合には、高精度な 歯車や高精度な組み立てとしても遊星歯車機構の起振力を抑える ことはできません.また、それらに加えて歯形偏差や歯すじ偏差、 そして負荷が作用したときの端部接触による影響も起振力に影響 を及ぼしますので起振力は増加することになります.また、位相 を最適とした組み合わせとした場合でも歯車精度や端部接触によ る影響を受けることになります.そして、コストなど種々考慮し て設計した歯車機構がどれほど安定した遊星歯車機構であるかを 知るためには起振力(値、変化)を知ることが重要となります.

汎用 CAE ソフトウェアで遊星歯車装置の振動解析をする場合 には、歯車やキャリアの起振力を基に解析する必要があります.

これらの問題を解決するために,遊星歯車機構の起振力解析シ ステムでは、位相や歯面偏差、そして歯の接触問題を考慮して 遊星歯車機構の起振力を解析することができますのでこの起振力 を使用することが有効な評価する手段と言えます.図49.1 に遊星 歯車機構の起振力解析システムの全体画面を示します.

49.2 適用

(1)型式 :プラネタリー,ソーラ,スター
(2)位相 :同位相,等分位相,カウンター位相,不等配置
(3)歯形 :インボリュート歯形

49.3 プロパティ(基準ラック)

プロパティで、歯先円直径の決定方式、基準ラック、モジュー ルまたは中心距離基準、歯車精度、平均摩擦係数の設定をします. 図 49.2 にプロパティの画面を示します.

基準ラック ● 並歯	(低曲)特殊			
項目	記号	Sun	Planet	Ring		
圧力角(deg)	αn		20.0000	0	1 / /	ΞĘ.
歯末のたけ係数	hac	1.0000	1.0000	1.0000	∥ ≁.—.\	*
歯元のたけ係数	hfc	1.2500	1.2500	1.2500] %/ →¥	£
歯元 R係数	rc	0.3750	0.3750	0.3750	1	cke
頂げき係数	ckc	0.2500	0.2500	0.2500	基準ラック	
歯先円決定方式 ● 標準方式 ○ 等クリアラ:	シス方式	t	☑ 諸 ☑ 較	元入力時に 位係数自動	ニデフォルト値をセットする カ計算	
平均摩	操係数	(効率計算	(に適用)		μ 0.0800	
JIS B 1702-1	(1998)	青度等級(fnの標準値	計算に適用	1) 7 🚖	
		被	2 **	54216	2112	形庙

図 49.2 プロパティ

49.4 遊星歯車機構の選択

図49.3に示す遊星歯車タイプの選択をします(プラネタリー型, ソーラ型,スター型の増減速).次に,図49.4で遊星歯車諸元を 設定します.

🝘 歯数	組合わせ道	齞					-		×	
条	件項目			数 値			反位 いとなる	る組合わせ	t	
調合	計速比			5.00	000	☑ 位相指定				
Pla	net 個数			3		○ 同位相				
🗹 歯数	範囲 (Sun)		20	~	50		 等分位 	计目		
🗹 歯数	範囲 (Plan	et)	5	~	50) カウンタ	2一位相		
山山数	胞囲 (Rine)	50	\sim	200) 最適位	2/4目(5P,6F		
速比誤	差上限値	×1		10.00	000		○ 不等酢	置位相		
क्रैन	最大個數			100					n=100	
No.	Sun	Plan	et	Ring	速日	Ł	速比副	【差[8]	^	
24	20	8	1 79			.9500		-1.0000		
25	20	3	31 82		5	i.1000		2.0000		
26	20	5	31 85		5	i.2500		5.0000		
27	20	8	12	79		.9500		-1.0000		
28	20	1	2	82		i.1000		2.0000		
29	20	8	2	85	ŧ	5.2500		5.0000		
30	20	8	12	88	E	i.4000		8.0000		
81	20	8	13	82	E	i.1000		2.0000		
32	20	8	3	85	6	.2500		5.0000		
L			-		-				~	
				確定	キャン	セル		Ë	数計算	
	図 49.5 歯数選択									

- (1) 遊星歯車の個数は, 1~6です.
- (2) 歯数は、直接入力する方式と、速比から計算した歯数一覧 (図 49.5) から選択する方式があります.図 49.5 では、等分 位相で速比誤差を 10% として計算した例を示しています.
- (3) 中心距離基準, モジュール基準, そして中心距離, モジュー ルを無関係に設定することができます.

- (4) 転位係数の計算は、モジュールと中心距離からバックラッシ が0になるように計算します.
- (5) 法線歯厚減少量の入力値は、デフォルト値として JIS バック ラッシ標準中間値の 1/2 を表示します.
- (6) 歯先円直径はプロパティで設定した基準ラックの歯たけと転 位係数から標準値を計算しますが変更は可能です.
- (7) 外歯車の歯元部の形状は、基準ラックによる創成運動によっ て生成する歯形です.内歯車の歯元は、入力 R 接続です.
- (8) 歯車の歯先は R で作成することができます.
- (9) 転位係数は、1種を変更すると残りの転位係数が連動して変化しますが、転位係数
 を転位係数 □のように
 を外すことで歯車それぞれ任意に転位係数を入力することができます。
- (10) 歯車諸元画面(図 49.4) 右下にある 転位変化 では転位の 変化に伴う「かみ合い率」,「すべり率」,「歯形」,「TIF 径」, そして「効率」を図 49.6 のように表示します.例えば、効率 を基準として転位係数を決定する場合は、図 49.6 (e)の効率グ ラフを指針として転位係数を決定することができます.そし て、図 49.6 (e) の画面のスライドバーを移動し、適正値を確 定することにより転位係数を図 49.4 の歯車諸元に移行するこ とができます.

 (e) 効率
 (f) 数値の適用

 図 49.6
 転位変化に伴う各値

49.5 歯車寸法

歯車諸元(図49.4)確定後,各種計算結果を図49.7~49.10に示 します.この画面で,寸法,歯厚,干渉の有無,効率,バックラ ッシなどの確認をすることができます.

1	歯車寸法結果					
す	法 歯厚 かみ合	い干症	溃,効率	×		
	項目	記号	単位	Sun	Planet	Ring
	正面圧力角	αt	deg		21.88023	
	基礎円筒ねじれ角	βb	deg		23.39896	
	正面法線ビッチ	Pbt	mm		4.0208	
	歯直角法線ビッチ	Pbn	mm		3.6902	
	リード	PZ	mm	185.8410	297.3457	761.9483
	最小有効直径(TIF)	dt	mm	25.6932	41.6522	111.5254
	最大有効直径	dh	mm	29.3820	45.6150	116.3505
	歯末のたけ	ha	mm	1.0016	0.8526	0.9174
	歯元のたけ	hf	mm	1.8109	1.9599	1.8951
	全歯たけ	h	mm	2.8125	2.8125	2.8125
	転位量	×m	mm	-0.2484	-0.3974	0.3326
	歯切り転位係数	xnc		-0.2513	-0.3764	0.3421
P.						

🍘 歯車寸法結果					- • ×
寸法 歯厚 かみ合	い干液	步,効率	z		
項目	記号	単位	Sun	Planet	Ring
歯直角円弧歯厚	sn	mm	1.7348	1.6210	1.6522
正面円弧歯厚	st	mm	1.9141	1.7886	1.8230
またぎ歯数	ZM		3 韋	5 🌲	13 🜲
基準またぎ歯厚	W	mm	9.5186	17.0749	48.2534
設計またぎ歯厚	W'	mm	9.4736	17.0249	48.3184
測定ビン径	dp	mm	2.0800	2.0710	2.0940
基準オーバーピン寸法	dm	mm	29.8507	46.0705	110.9395
設計オーバーピン寸法	dm'	mm	29.7226	45.9198	111.1292
キャリバ歯たけ	hj	mm	1.0253	0.8656	0.9142
基準キャリバ歯厚	Sj	mm	1.7818	1.6739	1.7214
設計キャリバ歯厚	Sj'	mm	1.7341	1.6208	1.6451

図 49.8 歯厚

🝘 歯車寸法結果						- • 💌	
寸法 歯厚 かみ合	い 干:	步,効率	Ĩ				
項目	記号	単位	Sun	Pla	net	Ring	
正面かみ合い圧力角	æwt	des	18.8	8674	:	24.52648	
かみ合い円筒ねじれ角	βw	des	24.5	7652	:	25.43734	
かみ合いビッチ円直径	dw	mm	27.0540	43.2864	45.0178	115.3582	
有効歯幅	Ьw	mm	15.0	000		15.0000	
かみ合い長さ	ga	mm	5.8	696	5.7764		
近寄りかみ合い率	εα1		0.7	0.7550		1.2630	
遠のきかみ合い率	εα2		0.7	048	0.1736		
正面かみ合い率	εα		1.4598		1.4366		
重なりかみ合い率	εβ		1.6143		1.6143		
全かみ合い率	εγ		3.0	741	3.0509		
すべり率(歯先側)	σa		0.6385	0.7860	0.0424	0.4206	
すべり率(歯元側)	σf		-3.6739	-1.7659	-0.7260	-0.0443	
正面法線方向バックラッシ	方向バックラッシ jnt mm		0.1	035	0.1253		
バックラッシ角度	jθ	deg	0.46338	0.28961	0.3505	0.13682	
入力軸総パックラッシ角度	Σjθ	deg		1.024	132 (Sun)		
最大接触直径	dja	mm	29.3820	45.6150	45.6150	115.9446	
最小接触直径	djf	mm	25.7379	41.7972	41.8348	111.5254	
J.							

図 49.9 寸法 (かみ合い)

🕖 歯車寸法結果 📃 😐 🗾										
寸法 歯厚	かみ合い	1 干渉,文	力率							
<u>効率</u> 0.98552 Bing sear 干洗										
ming geal 項	135	Ring								
インボリュ	- ト干渉	発生した	()							
	ド干渉	発生した	ເປັ							
トリミン	ング	発生しない								
歯先干	渉	発生した	RU 1							
回転比										
Sun	P	lanet	Ri	ng	Carrier					
1.000	0	-0.3064		0.0000	0.1961					

図 49.10 効率, 干渉

AMTEC www.amtecinc.co.jp

49.6 かみ合い図

歯車のかみ合いを図49.11および図49.12のように2次元図で表示します.操作画面によって、補助円や共通法線を表示することができますので歯面の接触位置の確認が容易です.歯車の回転角度を変え、拡大表示することができます.

49.7 レンダリング

歯車3Dのかみ合いを図49.13のように表示することができX,Y, Z 方向に回転させることができます.

49.8 歯形データファイル出力

生成した3種類歯車の歯形はファイル出力することができます. 図 49.14 に CAD 作図例を示します.

49.9 歯面修整

歯面修整は、太陽歯車、遊星歯車、内歯車それぞれに施すこと ができます. 修整の種類は、歯形修整、歯すじ修整、歯面修整の 3 種類ですが、実測した歯面データ(図 49.18)を読み込む機能が あり、図 49.19 で図 49.15 にデータを移行します.

本例では、図 49.15~49.17 のように遊星歯車に歯すじ修整のみ 与えた例を示します.

図 49.15 歯すじ修整の例(遊星歯車)

図 49.17 歯すじ修整の設定2

図 49.18 歯面修整データの例 (csv)

AMTEC www.amtecinc.co.jp

49.10 歯面応力解析設定

歯面応力解析は、CT-FEM Operaiii(ソフトウェア[45]参照)の 歯面膜要素を用いた解析機能を採用していますので図 49.20 のよ うに、まず、端部解析の有効、無効を設定します.端部解析は、 トロコイド干渉などの端部を解析する場合に使用します.次に、 歯幅中央位置、トルク、ヤング率、ポアソン比、ピッチ偏差を設 定し、図 49.21 で、かみ合い範囲角度と、食い違い誤差および並 行度誤差を設定します.歯面応力解析結果を図 49.22~49.25 に示 します.

図 49.20 歯面応力解析設定

🝘 歯面応力解析条件設定 📃 📃 💌									
開始,終了角度(θs,θe)設定									
15	シチ角	度	最大接触角度						
解析角度項目	記号	単位	Sun × Planet	$Planet \times Ring$					
開始角度	θs	deg	-13.809	-11.206					
終了角度	θe	deg	13.071	8.909					
角度分割数	N		45	45					
誤差項目	記号	単位	Sun × Planet	Planet × Ring					
食い違い誤差	φ1	deg	0.000	0.000					
平行度誤差	φ2	deg	0.000	0.000					
		確定	キャンセル	クリア					

図 49.21 歯面応力解析条件設定

図 49.22 歯面応力(太陽歯車×遊星歯車)

図 49.23 歯面応力 (遊星歯車×内歯車)

49.11 伝達誤差解析結果

伝達誤差解析結果を図 49.26 に示します.

(b) sun × planet, FFT

図 49.26 伝達誤差解析結果

49.12 遊星歯車機構のかみ合い解析

かみ合い解析条件を図 49.27 のように設定します. ここでは, 軸の偏心量,軸の倒れ量,位相,位置角度誤差,入力軸の回転方 向、そして、ここでは解析時の1ピッチ分割数を設定しています. また、遊星歯車構の座標系を図 49.31 に示します.

(z軸方向が歯車軸方向に対応) 図 49.28 遊星歯車機構の座標系(1)

※対応方向の ○対航方向の ○対航方向の ○対航方向の 動力向力時能振行 転方向の次応能分析 動振りモーメント時能快振 動振りモーメント次統

210 810 400 500 800 710

201 801 401 510 800 700

Dis = 1.17542, Dir = 4.005401, Dis = 8.66540

(b) 次数比分析

(b)次数比分析 図 49.29 遊星歯車機構の伝達誤差

1.2164

8.0004

문 같 1.11E412

े के 1.1(E+1) के 2.1(E+1)

0.115+10 110

(a) X 軸方向の力の時間波形

(c) X 軸周りモーメント時間波形 (d) 次数比分析 図 49.30 各要素に作用する X 軸方向の力とモーメント

解析結果は、遊星歯車機構の伝達誤差および サンギヤs、キャ リア c, リングギヤ r に作用する X, Y, Z 軸方向の力と各軸回り のモーメントを図 49.29 ~49.31 のように時間波形と次数比分析 のスペクトルで表示します(Y軸方向力の表示は省略).

(c) Z 軸周りモーメントの時間波形 (d) 次数比分析 図 49.31 各要素に作用する Z 軸方向の力とモーメント

これらの解析値(時間波形および次数比分析)は、図 49.32 の ように csv ファイルとして出力することができます.

E	_ • • ∂	- ¢		t	HT SEECS NO	sv - Exc	e L≣	Ret 🔍	-	6//	×
	£15 ≭−∆	18X K-1	1-1791	\$ 7 -7	約22 表示			TABORAT 7-A	V INTER		
רש מש	10 E≥ - HU E≥ - HU ✓	第32-69 B Z U 王 - 〇 フォ	- A* A* - A* A* - <u>A</u> - Z >h	· · ·	二 で 1 1 1 1 1 1 1 1 1 1 1 1 1	% 歌曲	局条件付 〒ァーブル 〒セルのア	き雪式。 として雪式設定 タイル。 スタイル	fir E	Р ЖЕ -	~
K1	2 -	1 ×	V \$1								¥
4	A	в	с	D	E	F	G	н	1	L J	-
ι	0	-111.527	19.84296	91.68438	0						
2	0.216998	-103.451	17.90759	85.54331	0						
3	0.433996	-55.866	27.697	28.16904	0						
1	0.650995	-44.1253	26.91963	17.20565	0						
5	0.867993	-58.824	39.56172	19.26231	0						
5	1.084991	-45.6154	34.09501	11.52043	0						
7	1.301989	-56,6859	38,71243	17.95345	0						
3	1.518987	-36.7828	33.88867	2.89413	0						
)	1.735986	-43.9411	39.62298	4.31808	0						
0	1.952984	118.002	-113.351	-4.65133	0						
1	2.169982	114.2337	-86.2725	-27.9611	0						
2	2.38698	135.1199	-71.9934	-63.1266	0						
2	9 603079	194 9907 解析结果C	5V (ON ANTT	n		1			_	v b
			_				III	ΞΞ-		+ 10	0%

図 49.32 解析結果のデータ出力例

49.13 HELP 機能

操作方法を知りたい場合は、図 49.33 の[HELP]機能を使用する ことができます.

49.14 遊星歯車機構の起振力解析例

遊星歯車機構の歯数の組み合わせの違いによる起振力解析例を 図49.34~49.40に示します.解析例1のかみ合い位相は、同位相 であり解析例2は、等分位相です.なお、かみ合い解析条件設定 は、図49.27と同じとしています.

(1) 解析例 1

図 49.35 歯面応力解析設定(解析例 1,2 共通)

(a) X 軸周りモーメント時間波形
 (b) 次数比分析
 図 49.36 各要素に作用する X 軸方向の力とモーメント

(a) Z 軸周りモーメント時間波形
 (b) 次数比分析
 図 49.37 各要素に作用する Z 軸方向の力とモーメント

(2) 解析例 2

🝘 歯車諸元 - - -プラネタリー型(減速) 項目 記号 単位 Sun Planet Ring 入出力 入力 出力 固定 設計速比(減速) 5.0000 歯数 82 20 位相タイプ 等分位相 実速比(減速) 5.10000 % 速比誤差 2.0000 Δi des des 20.00000 圧力角 α.n 0.00 " __ わじわき β ***** ねじれ方向 **** *** 入力基準 モジュール - (C) 型単 モジュー) 中心距離 nm 31,87500 0.00000 転位係数 🗌 0 00000 0 00000 法線歯厚減少量 0.048 0.0430 0.0620 基進円直径 d nm 0.00000 0.0000 0.00000 基礎円直径 db nm nm 0.00000 0 00000 0 00000 27.50000 41.25000 100.0000 由先円直復 歯底円直径 df nm 21.87500 35.62500 105.62500 0.00000 クリアランス 歯先R 0.00000 0.00000 0.00000 0.20000 0.20000 ck nm nm NM 歯元R 0.46875 0.46875 0.46875 477 15,00000 15 00000 15,00000 nm nm 2.1560 2.0750 測定ビン径 2.1310 確定 キャンセル クリア 転位変化

図 49.38 歯車諸元 (解析例 2)

(a) X 軸周りモーメント時間波形

(b) 次数比分析

図 49.39 各要素に作用する X 軸方向の力とモーメント

(a) Z 軸周りモーメント時間波形
 (b) 次数比分析
 図 49.40 各要素に作用する Z 軸方向の力とモーメント

X 軸周りのモーメント(倒れ方向起振力)は、図 49.36 と図 49.39 の比較から等分位相の方が大きくなっています.一方、Z 軸周り のモーメント(回転方向起振力)は、図 49.37 と図 49.40 の比較か ら同位相の方が大きくなっています.また、同位相の遊星歯車で は、図 49.36 と図 49.37 の比較から、どちらもかみ合い次数 z=81 次とその高調成分でピークとなります.等分位相の遊星歯車では、 図 49.39 と図 49.40 の比較から、Z 軸回りのモーメントはかみ合い 次数 z=82 とその高調成分でピークを示しますが、X 軸周りのモー メントでは、z=83 でピークを示しています.すなわち、この解析 ソフトウェアは、遊星歯車特有のサイドバンド現象も解析するこ とができます.ここでは、各軸回りのモーメントしか示していま せんが、各軸方向の力に付いても同様の結果は得られます.

参考文献

(1) 森川他, 遊星歯車のサイドバンド現象, 機論, Vol.80, No.815
 (2014)