[40] 多段減速歯車設計システム

図 40.1 多段減速歯車設計システム

40.1 概要

減速機を設計する際,総減速比に対する減速段数とその歯数比 を決め,寸法計算,強度計算,軸受荷重計算をするには計算が非 常に面倒です.例えば,全ての歯車の計算を終えた後で,初期段 の歯車の変更が生じた場合,後列の歯車を再度計算し直す必要が 生じます.

本ソフトウェアは、総減速比、段数そして動力を設定すること により歯車寸法、歯車強度計算を一括で行うことができます.そ して、歯車列の配置図を表示し、さらに歯車配置を自由に変更す ることができます.

40.2 歯数&強度計算条件

図 40.2 に歯数と強度計算条件の画面を示します. 総減速比の入 力範囲は、 $1 < \Sigma U < 10,000$ で、段数は $1 \sim 10$ で設定することができ ます. また、強度計算を規準に歯車寸法を決定しますが、その際、 曲げ強度と歯面強度の両方で歯車の大きさを決めることや曲げ強 度あるいは歯面強度だけで歯車の大きさを決めることができます. 本カタログでは $\Sigma U = 32.5$ 、3 段歯車の例を示します.

🦯 歯数&強度計算条件							
項目	記号	単位	数 値				
総速比	ΣU		32.5000				
速比許容率	🕸 Σlim % 1.00						
段数 № 3 3 🗸							
強度計算							
▼ 曲げ強さを評価 ▼ 歯面強さを評価							

図 40.2 歯数と強度計算条件の設定

40.3 歯数設定

歯数設定は、総減速比と段数により自動計算(AMTEC 独自の アルゴリズム)します. 例題では、総減速比 32.50 に対し、計算 による総減速比は 32.7 であり、その誤差は 0.76 %です. なお、 自動計算により決まった歯数は任意に変更が可能です.

🥖 歯数設	定							- • •
段数	3	総速比 32.5000 実総速比 32.7474 速比誤差(%) 0.76						
項目		1段 2段			3段			
計算速	比	4.0	022	3.1	913	2.5446		
歯数	t	18	72 19 61			20	51	
実速比	1	4.0000 3.2105 2.5500						
確定 <u>キャンセル</u> <u>クリア</u>								

図 40.3 歯数設定

40.4 設計条件

図 40.4 に設計条件設定画面を示します. 材料の設定は,図 40.5 に示すように「熱処理」に適応した材料の選択フォームを表示し, 設定することができます.また,各段歯車の材料を設定した後は, 図 40.6 のように材料一覧で確認することができます.

図 40.4 の場合, 圧力角およびねじれ角は全段共通 (プロパティ で設定:図 40.24 参照) ですが,各段の歯車で任意に設定するこ とができます.図 40.7 に各段歯車の圧力角とねじれ角を変更した 例を示します.

運転温度および摩擦係数は、プラスチック歯車(今後に対応予 定)の強度計算のために設けていますので鋼歯車の場合は強度計 算に影響しません.

図 40.4 設計条件の設定 1

図 40.5 材料設定の例

項目	記号	単位	11	2	2.6分		
材質			構造用鋼	構造用鋼	構造用鋼	構造用鋼	
熱処理			浸炭焼入れ	浸炭焼入れ	浸炭焼入れ	浸炭焼入れ	
材料記号			SCH420	SCM420	SCM420	SCM420	
心部硬度	H¥		HV 242	H¥ 242	HV 242	HV 242	
表面硬度	H¥		HV 600	HY 600	HV 600	HV 600	
許容曲げ応力	σFlim	MPa.	353.00	353.00	353.00	353.00	
許容ヘルツ応力	σHlim	MPa.	1314.00	1814.00	1814.00	1314.00	
材料定数係数	ZH	√MPa	189.80	189.80	189.80	189.80	
弾性係数	E	MPa.	205940	205940	205940	205940	
ポアソン比	ν		0.300	0.300	0.300	0.300	
•						Þ	

図 40.6 材料一覧

図 40.7 設計条件の設定 2

40.5 歯車寸法の設定

→法結果 で、図 40.8 を表示します.ここで表示する歯車諸元は、上記で設定した減速比や動力などを規準にして強度計算を行い、安全率(本例の場合、曲げと歯面強さ)が満足する歯車諸元を自動計算し表示しています.

ここでは、モジュール、歯数、圧力角、ねじれ角、歯幅などを 変更することができます.また、ここで表示している歯幅は強度 計算を規準に自動決定した値のため整数ではありませんので製品 の歯幅に変更可能です.今、歯幅を 18.6mm を 10mm に変更する と、再度強度計算を行い図 40.9 のように強度不足の数値を赤字で 表示します.

例題の場合,1~3段の歯車諸元数値を[確定]すると図40.10のように歯車寸法結果を表示します.

🦰 寸法設定				— ×
1段 2段 3段				
項目	記号	単位	ビニオン	ギヤ
モジュール	mn	mm	1	.25000
歯 数	Z		18	72
圧力角	αn	deg	20	.00000
ねじれ角	β	deg	15	.00000
ねじれ方向			左ねじれ 💌	右ねじれ 💽
基準円直径	d	mm	23.2937	93.1749
転位係数	xn		0.00000	0.00000
中心距離	a	mm	58	.2343
歯直角法線歯厚減少量	fn	mm	0.0750	0.0750
基礎円直径	db	mm	21.7976	87.1904
歯先円直径	da	mm	25.7937	95.6749
歯底円直径	df	mm	20.1687	90.0499
歯幅	b	mm	18.6350	18.6350
基準5%的歯元 R係数	ro		0.3750	0.3750
歯先 R	ra	mm	0.0000	0.0000
クリアランス	C	mm	0.3125	0.3125
法線方向トータルドゥクラッシ	jn	mm	0.	.1500
全かみあい率	εγ	·	2	.8201
すべり率(歯先)	σa		0.5055	0.8296
すべり率(歯元)	σb		-4.8673	-1.0223
トルク	T	N-m	30.0000	120.0000
回転速度	n	rpm	1234.0000	308.5000
曲げ強さ	sft	·	1.5814	2.0087
歯面強さ	sfc		1.0414	1.0414
材質			SCM420	SCM420
	[確定	キャンセル	

図 40.8 歯車寸法の設定1

🥖 寸法設定				×
1段 2段 3段				
項目	記号	単位	ビニオン	ギヤ
モジュール	mn	mm	1	.25000
歯 数	z		18	72
圧力角	αn	deg	20	.00000
ねじれ角	β	deg	15	.00000
ねじれ方向			左ねじれ 💌	右ねじれ 💌
基準円直径	d	mm	23.2937	93.1749
転位係数	xn		0.00000	0.00000
中心距離	a	mm	58	.2343
歯直角法線歯厚減少量	fn	mm	0.0750	0.0750
基礎円直径	db	mm	21.7976	87.1904
歯先円直径	da	mm	25.7937	95.6749
歯底円直径	df	mm	20.1687	90.0499
歯幅	b	mm	10.0000	18.6350
基準ラック歯元R係数	ro		0.3750	0.3750
歯先 R	ra	mm	0.0000	0.0000
クリアランス	C	mm	0.3125	0.3125
法線方向トータルバックラッシ	jn	mm	0	.1500
全かみあい率	εγ		2	.2510
すべり率(歯先)	σa		0.5055	0.8296
すべり率(歯元)	σb		-4.8673	-1.0223
トルク	T	N•m	30.0000	120.0000
回転速度	n	rpm	1234.0000	308.5000
曲げ強さ	sft		0.8486	1.2126
歯面強さ	sfc		0.4650	0.4650
材質			SCM420	SCM420
		確定	キャンセル	

図 40.9 歯車寸法の設定 2

🦯 寸法結果				— ×-	
1段 2段 3段					
項目	記号	単位	ピニオン	ギヤ	
転位量	×m	mm	0.0000	0.0000	
歯末のたけ	ha	mm	1.2500	1.2500	
歯元のたけ	hf	mm	1.5625	1.5625	
全歯たけ	h	mm	2.8125	2.8125	
リード	PZ	mm	273.1091	1092.4364	
基礎円筒ねじれ角	βb	deg	14	.07610	
正面かみあい圧力角	aw	deg	20	.64694	
かみあいと。が円直径	dw	mm	23.2937	93.1749	
歯直角基準円弧歯厚	sn	mm	1.9635	1.9635	
」 歯直角設計円弧歯厚	sn'	mm	1.8837	1.8837	
正面基準円弧歯厚	st	mm	2.0328	2.0328	
正面設計円弧歯厚	st'	mm	1.9501	1.9501	
歯直角法線ビッチ	pbn	mm	3.6902		
正面法線ビッチ	pbt	mm	3.8044		
かみあい長さ	Ga	mm	6.0561		
正面かみあい率	εα		1	.5919	
重なりかみあい率	εβ		1	.2282	
またぎ歯数	ZM		3 💌	9 💌	
基準またぎ歯厚	W	mm	9.5733	32.7579	
設計またぎ歯厚	W,	mm	9.4983	32.6829	
測定ピン径	dp	mm	2.156	2.105	
基準オーバーピン寸法	dm	mm	26.2665	96.0191	
設計オーバーピン寸法	dm'	mm	26.0824	95.8095	
キャリバ歯たけ	Hj	mm	1.2886	1.2597	
基準キャリバ歯厚	Sj	mm	1.9615	1.9634	
設計キャリバ歯厚	Sj'	mm	1.8820	1.8836	
基準ラック歯末のたけ	hao'		1.0000	1.0000	
基準ラック歯元のたけ	hfo'		1.2500	1.2500	
トータルルドックラッシ	jt	mm	0	. 1653	

図 40.10 歯車寸法

40.6 強度計算結果

32度結果 で、図 40.11 に強度計算結果を表示します. なお、 歯車強度計算は、JGMA401-01:1974,402-01:1975 に基づいています. また、図 40.8 の歯車諸元は図 40.11 に示すように曲げ強さ、歯面 強さ全てが満足する歯車諸元です.

各段歯車の強度結果は 18 28 38 で選択することができます.

🦰 強度結果				×
1段 2段 3	ita 🖌			
項目(曲げ)	記号	単位	ビニオン	ギヤ
許容曲げ応力	σFlim	MPa	353.0000	353.0000
曲げ有効歯幅	b'	mm	18.6350	18.6350
歯形係数	YF		2.9851	2.3501
荷重分布係数	Yε		0.	.6282
ねじれ角係数	Υβ		0.	.8750
寿命係数	KL		1.0000	1.0000
寸法係数	KF×		1.0000	1.0000
動荷重係数	Kv		1.	.0253
呼び円周力	Ft	N	2575.	.8015
許容円周力	Ftlim	N	4073.3212	5173.9595
許容馬力	PFlim	k₩	6.1306	7.7871
許容トルク	TFlim	N•m	47.4414	241.0415
曲げ強さ	Sft		1.5814	2.0087
歯元曲げ応力	σF	MPa	223.2227	175.7374
項目(面圧)	記号	単位	ビニオン	ギヤ
許容ヘルツ応力	σHlim	MPa	1314.0000	1314.0000
面圧有効歯幅	bw	mm	18.6350	
領域係数	ZH		2.4247	
寿命係数	KHL		1.0000	1.0000
かみあい率係数	Ζε		0.	.7926
粗さ係数	ZR		0.9362	0.9362
潤滑速度係数	ZV		0.9596	0.9596
硬さ比係数	ZW		1.0000	1.0000
荷重分布係数	KHβ		1.	.0000
動荷重係数	Kv		1.	.0253
呼び円周力	Fc	N	2575.	.8022
許容円周力	Felim	N	2682.3126	2682.3126
許容馬力	Pelim	k 🛛	4.0371	4.0371
許容トルク	Tclim	N•m	31.2405	31.2405
歯面強さ	Sfc		1.0414	1.0414
ヘルツ応力	σH	MPa	1287.6473	1287.6473

図 40.11 強度計算結果

40.7 すべり率とヘルツ応力のグラフ

インボリュート歯形の特徴としてかみ合いピッチ円ではころが り運動となりますが、これ以外ではすべりを伴う運動となります. 各歯車段のすべり率とヘルツ応力の変化グラフを図 40.12 および 図 40.13 に示します.

40.8 歯形かみ合い図

図 40.14 に各段歯車のかみ合い図を示します. コントロールフ オームで歯車を回転させることもでき,また,距離計測もできま す.

図 40.14 歯形かみ合い図

40.9 歯形かみ合い図と歯形レンダリング

図 40.14 に各段歯車のレイアウトを示します. コントロールフ オームにより寸法線や歯形を表示することができます. また, 図 40.16 のように歯車を軸方向に移動して歯車側面に隙間を与える ことや, 歯車軸をY軸方向に移動することもできます. この歯形 レンダリング(オプション)を図 40.17 に示します.

また, 歯車軸を移動する処理は, 小型の歯車装置(小型モータ 減速機等)に適しています. 図 40.18 および図 40.19 に 8 段減速歯 車を示します.

図 40.16 レイアウト2

図 40.17 歯形レンダリング1

図 40.18 レイアウト3 (8 段減速の例)

図 40.19 歯形レンダリング2(8 段減速の例)

40.10 軸受荷重 (オプション)

歯車に作用する荷重と、軸受けに作用する荷重を計算します. 荷重の種類は、接線力、法線力など各軸受けに作用する荷重を20 種類計算します. 図 40.20 に計算結果を示します.

40.11 ファイル出力 (オプション)

生成した歯形とレイアウトは、図 40.21 で出力することができ ます. 図 40.21 にレイアウトの CAD 作図例を,図 40.22 に歯車列 の CAD 作図例を示します.

🦯 ファイル出力	×
項目	数 値
種類	歯 形 ▼
段	歯 形 201-7201
歯車の種類	3DL-1791
│ 中心座標×	0.0000
中心座標丫	0.0000
□ 中心座標Z	0.0000
補間精度(µm)	1.00
歯幅分割数	9 🔽
確定	キャンセル

図 40.21 ファイル出力

図 40.23 CAD 作図例 (歯車列)

40.11 プロパティ

(1)規準ラックと標準値

図 40.24 に規準ラックと標準値の設定画面を示します. 歯幅の 設定範囲や歯幅決定係数で減速機の大きさを決めることができま す.

図 40.24 規準ラックと標準値

(2)任意材料の登録

任意材料を図 40.25 で設定することができます. 図 40.5 の材料 選択で「任意材料」を選択することができます.

📕 材料管理			×		
項目	記号	単位	数 値		
材質			金 属 💌		
材料記号			AAA-00		
許容曲げ応力	σFlim	MPa	353.00		
許容ヘルツ応力	σ Hlim	MPa	1314.00		
弾性係数	E	MPa	1721		
ポアソン比	ν		0.350		
備考			xyz社		
【▲ 【Record: 1 】 】 證録 [井/)也 削除 勿7					

図 40.25 任意材料の設定