[26] CGR ラック&ピニオン設計システム

図 26.1 CGR ラック&ピニオン設計システム

26.1 概要

CGR(Constant Gear Ratio)ラック設計システムは、ギヤレシオに 基づいて運動するピニオンとラックの歯形を生成し、強度計算、 FEM歯形応力解析、すべり率グラフ、ヘルツ応力グラフを計算す ることができます.

26.2 ピニオンの諸元入力

ラックとかみ合うピニオンの諸元と、ラックを生成するための ピニオン諸元を入力します.図26.2にピニオン諸元の入力画面を、 図26.3 にピニオンの寸法を示します.

🦯 ピニオン諸元			- • 💌
項目	記号	単位	ビニオン
モジュール	mn	mm	1.85000
歯 数	Z	·	8
圧力角	an	deg	20.00000
ねじれ角	β	deg	25.00000
ねじれ方向		[右ねじれ 💌
基準円直径	d	mm	16.3300
転位係数	xn	·	0.55000
歯先円直径	da	mm	21.0000
歯底円直径	df	mm	14.5000
歯厚減少量	fn	mm	0.0000
歯先 R	Ra	mm	0.5000
基準うっク歯元R係数	Reo		0.3750
測定ビン径	dp	mm	4.5000
軸交差角	Σ	deg	20.00000
曜			

図 26.2 ピニオン諸元の設定

🦰 L° 二水寸法			×
項目	記号	単位	ピニオン
正面圧力角	as	deg	21.88023
またぎ歯数	ZM	·	2
またぎ歯厚	W	mm	9.1624
オーバーセッフ寸法	dm	mm	25.5494
歯末のたけ	ha	mm	2.3350
歯元のたけ	hf	mm	0.9150
正面円ビッチ	Ps	mm	6.4128
歯直角円ビッチ	Pn	mm	5.8119
基礎円直径	db	mm	15.1537
基礎円筒ねじれ角	βb	deg	23.39896
TIF直径	TIF	mm	15.5779
」 歯直角歯先幅	Sn	mm	0.8969

図 26.3 ピニオンの寸法

26.3 ピニオン歯形図

ピニオン歯形図を図 26.4 に示します. 図 26.5 は、歯形の部分拡 大図です.

26.4 ギヤレシオ

ピニオンの回転角に対するラックゲイン(mm/rev)の数値を設定 します.図 26.6 にギヤレシオの設定グラフです.例題の場合,ラ ックゲインは 50(mm/rev)ですが任意に設定することができます. (1)ストッパ位置の入力

ピニオンの最大回転角度がラック長です.

(2)図中の一点鎖線は、①ころがり円がピニオン歯先円のときのストロークゲイン、②ころがり円がピニオン基準円のときのストロークゲイン、③ころがり円がピニオン基礎円のときのストロークゲインを示します。

(3)グラフ表示後,スクロールバーをスライドさせると上部にピニ オン回転角とラックストローク値を表示します.

2998876					
項目	記号	単位	数 値		
ピッチ数(左/右)	N		10 10		
直径	daR	mm	35.0000		
理論中心距離	aÛ	mm	23.0000		
組立中心距離	a	mm	23.0000		
基準ビッチ高さ	ph	mm	31.3175		
歯末のたけ	ha	mm	1.4700		
歯元のたけ	hf	mm	1.7800		
歯先クリアランス	ckt	mm	0.4625		
歯底クリアランス	ckb	mm	0.4625		
法線歯厚減少量	fn	mm	0.0000		
測定ピン径	dp	mm	3.090		
歯先 R	ra	mm	0.2500		
歯元 R	rf	mm	0.7000		
中央位置			山基準 ▼		
中央位置角度	bA	deg	0.0000		
詳細図 確 定 キャン 地 参考図					
図 267 ラックの諸元設定					

26.5 ラックの諸元設定

ラックの諸元設定画面を図 26.7 に示します. ラックの位置角度 の設定によりラックの基準位置(ピニオン回転角 0°位置)にお ける中央断面の歯形が決まります.また,歯山または谷を選択す ることができます.図 26.8 にラック参考図を,図 26.9 にラック寸 法の計算結果を示します.

26.6 CGR ラックの歯形軌跡図

ラック歯幅中央断面の歯形軌跡図を図 26.10 に示します.

図 26.10 ラックの軌跡図

26.7 レンダリング図

歯形計算終了後,[レンダリング図]ボタンを押すと,ピニオン とラックの歯形かみあい図を表示します.レンダリング図は,座 標軸の角度を変更することにより,視点を変えて観察することが できます.

図 26.11 にピニオン上面から観たレンダリング図を示します. また,図 26.12 のラック背面から観たしたレンダリング図には, かみあい接触線を観察することができます.図 26.11 の右に示す コントロールフォームで,

①座標軸の角度変更
②ズーム
③ワイヤフレーム、シェード表示切り換え
④背景色の設定
⑤ラックストロークチェック(ピニオンまたはラックの移動)

の機能があります.

図 26.11 レンダリング(ピニオン上面から観察)

図 26.12 レンダリング(ラック背面から観察)

26.8 CAD ファイル出力

ピニオンと CGR ラックの歯形を DXF または IGES ファイルで 出力することができます. 図 26.13 にファイル出力設定を示しま す. CAD 作図例を, 図 26.14, 図 26.15 に示します.

図 26.14 CAD 作図(IGES)

(ラック) 図 26.15 CAD 作図(IGES)

26.9 すべり率グラフ

ラックとピニオンのかみ合いにおけるすべり率グラフを図 26.19に示します.

26.10 強度計算

JGMA 強度計算に基づいた計算結果を図 26.17 に示します.

🥖 JGMA強度計算諸元 📃 🖃 🗾 🖂								
項目	ピニオン				CGRラック			
熱処理	高周波焼入れ 👻			高周	波烤	入れ	-	
材料記号	SCM440			-	SCM440			•
心部硬度	HV		263		HV 263			
表面硬度	HV		540		HV 540			
σFlim(MPa)			284.5		284.5			
σHlim(MPa)			1128.0				1128.	0
JIS精度等級(1976)		3		•		3		-
項目	記号	÷	単位		ピニオン 0		CGR5	-,7
トルク	T		N-m		70.000			
	n		rpm		60.000		-	
軸受け支持方法					両軸受けに対称 ▼			
寿命繰り返し回数	L				1000000			
歯車の回転方向					正転のみ		-	
周 速	V		m/s		0.0514			
歯形修整						有	IJ	-
歯面粗さ	Rma>	(μm		6.00 6.		.00	
負荷時歯当り状況						良	好	•
材料定数係数	ZM		(MPa) ^{0.5}		189.	800	189	.800
潤滑油係数	ZL				1.	.000	1	.000
過負荷係数	Ko		1.000					
歯元曲げ安全率	SF		1.200					
歯面損傷安全率	SH				1	.150		
輝 定 キャンセル								

図 26.17 強度計算諸元

A JGMA強度計算結果						
項目(曲げ)	記号	単位	ピニオン	CGRラック		
許容曲げ応力	σFlim	MPa	284.500	284.500		
曲げ有効歯幅	b'	mm	23.328	21.478		
歯形係数	YF		1.691	1.359		
荷重分布係数	Yε		0.837	1.024		
ねじれ角係数	Υβ		0.792	0.943		
寿命係数	KL		1.000	1.400		
寸法係数	KF×		1.000	1.000		
動荷重係数	Κv		1.000	1.000		
呼び円周力	Ft	N	8562.657	8784.804		
許容円周力	Ftlim	N	9137.647	10725.229		
曲げ強さ	Sft		1.067	1.221		
歯元曲げ応力	σF	MPa	266.598	233.028		
項目(面圧)	記号	単位	ピニオン	CGRラック		
許容ヘルツ応力	σHlim	MPa	1128.000	1128.000		
面圧有効歯幅	bw	mm	21.478	21.478		
領域係数	ZH		2.294	2.086		
寿命係数	KHL		1.000	1.300		
かみあい率係数	Zε		0.915	1.005		
粗さ係数	ZR		1.002	1.001		
潤滑速度係数	ZV		0.891	0.891		
硬さ比係数	ZW		1.000	1.000		
荷重分布係数	KHβ		1.000	1.000		
動荷重係数	Kv		1.000	1.000		
呼び円周力	Fc	N	8573	.178		
許容円周力	Fclim	N	1679.942	2841.275		
歯面強さ	Sfc		0.196	0.331		
│ ヘルツ応力	σH	MPa	2548.196	1959.401		

図 26.18 強度計算結果

26.11 ヘルツ応力グラフ

ラックとピニオンのかみ合いにおけるヘルツ応力グラフを図 26.19 に示します.

26.12 FEM 歯形応力 (オプション)

ピニオンと CGR ラックの 2 次元 FEM 歯形応力解析をします. 図 26.20 に FEM 設定画面を,図 26.21 および図 26.22 に応力分布 図を示します.

🦂 FEM 解析諸	沅					
項目	記号	単位	ビニオン	CGRラック		
材料記号			SCM440	SCM440		
縦弾性係数	E	MPa	205800.0	205800.0		
「ポアソン比」	ν		0.300	0.300		
1 縦分割数	Vd		12	12		
横分割数	Hd		22	20		
荷重点位置	Pn		2	2		
荷重	Ft	N	8562.66	8784.80		
色階調数	nc		100			
変位倍率	Sd		100			
麗定						

図 26.20 FEM 解析諸元

※強度計算は、AGMA2001-C95 規格にも対応可能です.別途お問 い合わせ下さい.