[20] Face gear design system iii

図 20.1 Face gear design system iii

20.1 概要

本ソフトウェアは, Face Gear Design System を新しくした商品 です. 今までオプション扱いしていた機能も一部,基本ソフトウ ェアに含めています,また,軸角は90°以外も計算でき,ピニオ ン歯数1歯(少歯数オプション)にも対応しています.

本ソフトウェアは、ピニオンの歯形(インボリュート)を基に して、それにかみ合うフェースギヤの3次元歯形を決定し、軸角 誤差を与えたときの、かみ合い時の歯当たり(接触距離)や実か み合い率、伝達誤差、すべり速度、そして、すべり率の機能も追 加しました.図 20.1 にソフトウェアの全体画面を示します.

20.2 ソフトウェアの構成

ソフトウェアの構成を表 20.1 に示します. 表中の〇は基本ソフトウェアに含まれ、〇はオプションです.

No.	項目	掲載項	構成
1	ピニオン寸法	20.3	0
2	ギヤ寸法	20.4	0
3	組み図	20.4	0
4	断面図	20.5	0
5	歯形計算	20.6	0
6	歯形、歯すじ修整	20.7	0
7	任意修整	20.7	0
8	歯形レンダリング	20.8	0
9	接触解析	20.9	0
10	歯形出力	20.10	0
11	少歯数	20.12	0
12	設計データ管理		0

表 20.1 ソフトウェアの構成

20.3 ピニオン寸法

図 20.2 にピニオン諸元の設定画面を示します. ピニオン歯数は 6~99 入力できますが、少歯数対応機能(オプション)として 1 ~5 歯入力することができます. 少歯数の設計例は 20.12 項に示し ます.

ねじれ角は 0°~80°までを設定することができ,歯厚入力方 式では,転位係数,またぎ歯厚,オーバーピンそして転位量から 選択することができます.また,面取りは C 面と R 面で設定する ことができます.

図 20.3 にピニオン寸法の計算結果を示します.オーバーピン径 は理論値を表示しますが、使用するピン径に合わせて変更するこ とができます.

🛁 ピニオン寸法(入力)	.)		- • •	
項目	記号	単位	数 値	
歯直角モジュール	mn	mm	1.0000	
歯数	z		9	
歯直角圧力角	αn	deg	20.0000	先直角前位低频
ねじれ角	β	deg	40 * 0 * 0.00 "	またぎ歯厚
ねじれ方向			右ねじれ 👻	オーバービン寸法
基準円直径	d	mm	11.7487	転位量
基礎円直径	db	mm	10.6118	
歯厚入力方式			歯直角転位係数 →	
歯直角転位係数	xn		0.30000	
またぎ歯数	Zm		****	
またぎ歯厚	W	mm	****	
使用ピン径	dp	mm	****	円弧R 👻
オーバーピン寸法	dm	mm	****	面取り無し
転位量	×m	mm	0.3000	HRAR
法線歯厚減少量	fn	mm	0.0000	
歯先円直径	da	mm	14.2000	
歯底円直径	df	mm	9.8487	
歯元(工具刃先)R	Rf	mm	0.3750	
歯幅	Ь	mm	10.0000	
歯先端部形状			円砌R 🗸	ビニオン寸法(入力1)
歯先R	Ra	mm	0.2000	
歯先0面(縦方向)	Cah	mm	****	
歯先C面(横方向)	Caw	mm	****	Cah
確定 戻す	一棵	準	クリア 閉じる	- IF Caw 1

図 20.2 ピニオン諸元

🚽 ピニオン寸法(結果1)	- • •		
項目	記号	単位	数 値
正面モジュール	mt	mm	1.3054
正面圧力角	αt	deg	25.4138
基礎円筒ねじれ角	βb	deg	37.1586
軸方向ビッチ	Pt	mm	4.8875
リード	Pz	mm	43.9871
全歯たけ	h	mm	2.1757
歯切転位係数	×nc		0.3000
最小インボリュート直径(TIF)	dt	mm	10.7575
最大インボリュート直径	dh	mm	14.0591
歯直角円弧歯厚	sn	mm	1.7892
正面円弧歯厚	st	mm	2.3356
またぎ歯数	ZM		2
基準またぎ歯厚	w	mm	10.8047
設計またぎ歯厚	w	mm	10.8047
使用ビン径	dp	mm	1.8694
基準オーバービン寸法	dm	mm	14.8599
設計オーバービン寸法	dm'	mm	14.8599

図 20.3 ピニオン寸法

20.4 フェースギヤ寸法

図 20.4 にフェースギャ諸元設定画面を示します. 軸角入力範囲 は 45°~135°です. オフセットを与えるとフェースギャの歯形 生成に強く影響を及ぼすためフェースギャの外径側には歯先尖り が,また,内径側にはアンダーカットが生じ易くなります. その ため,入力時には注意が必要ですが,標準値および制限値を示し ますので入力は容易です. なお,「刃先 R」はフェースギャを生成 するときの工具の刃先 R を示しています. また,オフセットと内 径,外径の定義を図 20.5 に示し,寸法結果と組み図を図 20.6 およ び図 20.7 に示します. なお,オフセットとねじれ角には制限があ ります.

🛁 ギヤ寸法(入力2)				x		
項目	記号	単位	敖 値			
歯 数	Zŝ		46			
オフセット	е	mm	8.0000			
軸 角	Σ	deg	90.0000			
クリアランス	cka	mm	0.2500			
クリアランス	ckf	mm	0.2500			
歯直角法線方向バックラッシ	jn	mm	0.1000			
歯先R = 刃元R	ra	mm	0.2000			
歯元R = 刃先R	rf	mm	0.2500			
内端直径	Di	mm	46.0000			
外端直径	Do	mm	56.0000			
確定 戻す 標準 クリア 閉じる						
図 20.4 フェースギヤ諸元						

20.5 断面図

図 20.8 にピニオン歯形を示します.ただし、ピニオンの赤線の 歯形は図 20.2 で設定したピニオン諸元に基いた歯形で、緑線はギ ヤを加工する工具の刃形です.

20.6 歯形計算

ギヤの歯形を計算する際、歯形分割数(図 20.9 参照)と歯幅分 割数(図 20.11 参照)を設定します.このとき、図 20.9 に刃先と がりに発生の有無を表示します.刃先尖りが生じる場合は、フェ ースギヤの歯形を正しく生成することができません.

図 20.9 設定 (フェースギヤ歯形)

歯形計算終了後,図 20.10 を表示します.ピニオンとギヤの位置 (Js, Je)の定義を図 20.12 に示し、ギヤの歯形(断面)の例を図 20.13 に示します.

20.7 歯形・歯すじ修整

歯形および歯すじ修整は図 20.14~20.16 のように定型で与える ことができ,設定した修整を図 20.16 のように表示することがで きます.また,定型で設定した修整は図 20.17 のように任意修整 にデータを引き継ぐことができます.

図 20.17 の任意修整では、歯面の分割や各位置でのデータの変 更が容易であり図 20.17(b)のように修整を色分布で表すことがで きます.本例では、図 20.17 のようにピニオンは無修整とし、ギ ヤに歯面修整を与えるものとします.ここで設定した歯面修整は, CSV ファイルとして出力することができますし、他で作成した CSV ファイルを読み込むこともできます.

20.8 歯形レンダリング

生成した歯形を図 20.18 のように表示することができます. 歯 の接触を確認するため自動回転機能や回転補正、そして軸角に誤 差を与え歯の接触を確認することができます.

20.9 接触解析

図 20.19 で接触解析の設定を行い[確定]すると生成した歯形の 伝達誤差解析、歯当たり(接触距離)や、すべり速度を計算しま す

 右接触(時計回り) 左接触(反時計回り) 							
項目	記号	単位	数 値				
角度分割数	N		101				
軸角誤差	ΔΣ	deg	0.0000				
ねじれ角誤差	Δβ	deg	0.0000				
誤差X	⊿x	mm	0.0000				
誤差Y	⊿y	mm	0.0000				
誤差Z	⊿z	mm	0.0000				
回転数	n	1/min	600.000				
最大接触距離	L	μ.m.	5.00				
全かみ合い率	εγ		2.29				
確定 戻す クリア 閉じる 参照							

凶 20.19 接触解析設定

そして、歯面修整を考慮し、かみ合い接触を基にして全かみ合 い率(本例では ε=2.29)を計算します. 伝達誤差解析結果 (TE=0.19µm)を図 20.20 に、フーリエ解析結果を図 20.21 に示し ます.

歯当たり解析(接触距離)とすべり速度,そして、すべり率を 図 20.22~20.24 に示します. 本例では、図 20.17 でギャに歯面修 整を与えていることから図 20.22 では歯面両端部で接触が弱くな っていることが解ります.また、フェースギヤは、ギヤの外側と 内側で、すべりの差が大きくなることから図 20.23 や図 20.25 で、 すべり速度を確認することができます. なお、伝達誤差や、すべ り速度(率)は、軸の取り付け誤差を与えても解析することがで き、これらは両歯面について解析可能です。

(b)ギヤ

(a)ピニオン 図 20.23 すべり速度

図 20.25 歯当たり解析(接触距離)のセル表示

20.10 歯形出力

生成した歯形を図 20.26 で出力することができます. 図 20.18 の歯形を 3D-IGES で出力し, CAD で作図した例を図 20.27 に示します.

図 20.26 歯形出力

20.11 軸角 Σ=120°および Σ=70°の例

ピニオンおよびギヤの諸元を同じとして図 20.28 のように軸角 を Σ =120°としたときの計算例を図 20.29~20.31 に示します.

また、ピニオンおよびギヤの諸元を同じとして図 20.32 のよう に軸角を Σ =70°としたときの計算例を以下に示します.

20.12 少歯数 (オプション)

高減速比を得るためピニオン歯数 $z_1=1$ を設定することができます. ここでは $z_1=2$ とし、ギヤ歯数を $z_2=51$ とした例を以下に示します. また、少歯数の場合でも図 20.28 のように軸角を 90°以外で設計することができます.

🚽 ピニオン寸法(入力)	L)					
項目	記号	単位	數 値			
歯直角モジュール	mn	mm	1.0000			
歯 数	z		2			
歯直角圧力角	αn	deg	20.0000			
ねじれ角	β	deg	70 * 0 ' 0.00 "			
ねじれ方向			右ねじれ 👻			
基準円直径	d	mm	5.8476			
基礎円直径	db	mm	4.0044			
歯厚入力方式			歯直角転位係数 ▼			
歯直角転位係数	xn		0.50000			
またぎ歯数	Zm		****			
またぎ歯厚	W	mm	****			
使用ビン径	dp	mm	*****			
オーバーピン寸法	dm	mm	****		22	100 0
転位量	×m	mm	0.5000	正面モジュール	nt	N
法線歯厚減少量	fn	mm	0.0000	正面圧力用 基礎円筒ねじれ角	βb	de
歯先円直径	da	mm	8.8476	軸方向ビッチ	Pt Pz	10
歯底円直径	df	mm	4.3476	全歯たけ	h	n
歯元(工具刃先)R	Rf	mm	0.3750	 (TIF) (TIF) 	dt	
些 他	ь		15,0000	最大インボリュート直径 曲声曲円部曲度	dh	N
111 TH	U		10.0000	正面円頭金厚	st	10
歯先端部形状			円弧R 👻	またぎ歯数	20	
告告9	Re	mm	0.2000	基準またぎ歯厚		10
ED CO	na		0.2000	設計またぎ歯原	*	N
歯先C面(縦方向)	Cah	mm	*****	使用ビン怪	dp	n
	-		dudududu	基準オーバービン寸法	de de	n
生生の工(株子会)					CIII	- D
歯先C面(横方向)	Caw	mm	*****	BARLES OF	-	
歯先0面(横方向)	Uaw	mm	*****	測定ビン径	dp	N

図 20.36 ピニオン諸元と寸法

━ ━ ■						
項目	記号	単位	数 値			
歯 数	Zg		51			
オフセット	е	mm	15.0000			
軸角	Σ	deg	90.0000			
クリアランス	cka	mm	0.2500			
クリアランス	ckf	mm	0.2500			
歯直角法線方向バックラッシ	jn	mm	0.1000			
歯先R = 刃元R	ra	mm	0.2000			
歯元R = 刃先R	rf	mm	0.2500			
内端直径	Di	mm	145.0000			
外端直径	Do	mm	165.0000			
確定 戻す 標準 クリア 閉じる						

図 20.37 ギヤ諸元

AMTEC www.amtecinc.co.jp

 B2
 (A)

 2.9238
 46.7808

 46.7808
 52.0091

 3.3432
 6.8864

 2.2500
 0.5000

 4.3326
 8.8018

 1.3348
 5.6569

0.0000

9.5452 10.2429

図 20.43 接触解析設定

. .