[14] GearPro iii (involute gear profile design system)

図 14.1 GearPro iii (インボリュート歯形出力)

14.1 概要

本ソフトウェアは, GearPro Master を新しくしたソフトウェア です. 2016年2月を以って GearPro Master の販売は終了し, GearPro iiiの販売とさせていただきます.

本ソフトウェアは成形歯車にも考慮し真円ではない歯車の歯形 も生成することができ、歯形・歯すじ修整、そして軸方向直径修 整にも対応していますので成形歯車の製造には最適なソフトウェ アといえます.また、工具(ホブ、ピニオンカッタ)加工にも対 応した歯形を生成することができますので金属歯車の加工シミュ レーションとしても使用することができます.

今までオプション扱いしていた機能も一部,基本ソフトウェア に含めると共に種々新しい機能も追加し,HELP機能も設けてい ます.図 14.1 に GearPro iii の全体画面を示します.

14.2 ソフトウェアの構成

GearPro iiiの構成を表 14.1 に示します.表中の○は基本ソフト ウェアに含まれ◎はオプションです.また,△は、別途お問い合 わせください.

No.	項目	掲載項	構成
	基準ラック (JIS)	14.4	0
1	BS 規格	14.4	0
	DIN58400	14.4	0
2	歯車諸元	14.5	0
3	工具諸元	14.6	0
4	歯形、歯すじ修整	14.7	0
5	軸方向直径修整	14.8	\odot
6	真円度修整	14.9	0
7	歯形計算		0
8	2D 歯形図	14.10	0
9	測定ボール位置図	14.10	0
10	歯形レンダリング	14.11	0
11	歯形出力ファイル	14.12	0
12	カウンターラック歯形	14.13	\bigcirc
13	成形砥石歯形		\triangle
14	設計データ管理	14.14	0

表 14.1 ソフトウェアの構成

14.3 適用

- (1) 歯車の種類:円筒歯車(外歯車,内歯車)
- (2) 歯形:インボリュート
- (3) 基準ラック:JIS,BS,DIN58400
- (4) 工具

- (4.1) ホブ,転位ホブ:標準,セミトッピング,プロチュバランス,プロチュバランスセミトッピング
- (4.2) ピニオンカッタ:標準,セミトッピング,プロチュバランス,プロチュバランスセミトッピング
- (4.3) 工具による加工:外歯車はホブまたはピニオンカッタ で加工し内歯車はピニオンカッタで加工します.
- (5) 生成歯形:歯車歯形,電極歯形
- (6) 修整:歯形,歯すじ,真円度,軸方向直径
- (7) 成形研削用砥石歯形の生成

14.4 基準ラック (プロパティ)

基準ラックを図 14.2 に示します.基準ラックの種類は JIS 規格 の他に, BS 規格 (オプション) および DIN4158400 規格 (オプシ ョン) による基準ラックも設定することができます. 図 14.3 に BS 規格と DIN58400 規格の基準ラックを示します.

「基準設定」では図 14.4 のように歯車の種類(外・内歯車の選 択),歯形基準(基準ラック創成,工具切削,歯元 R 接続)そし て歯形設計基準(歯車歯形,電極)を設定することができます. 歯形基準で歯元 R 接続を選択できますが,これは古い図面にも対 応することを考慮して設けています.

歯元を単一Rにすることの不具合は、歯数が少ない場合、相手 歯車の歯先干渉の原因となります.また、強度計算は歯元形状が トロコイド形状であることを前提としていますのでそこに単一R で歯車を製作すると強度計算の意味をなしません.そして、歯元 単一R形状は、トロコイド形状に比して応力集中が大きくなりま す.このことは JIS B 1759(2013)「プラスチック円筒歯車の曲げ強 さ評価方法」や成形プラスチック歯車研究専門委員会発行の「プ ラスチック歯車の設計指針」にも記載されています.

14.5 歯車諸元

図14.5に示すように歯車諸元を設定します.歯厚入力方式では、 ①転位係数、②またぎ歯厚、③オーバーボール寸法④円弧歯厚の 内から1つを選択します.図14.6に寸法結果を示します.

🖁 歯車寸法諸元				
項目	記号	単位	數 値	
モジュール	mn	mm	2.00000	ホーパナノズ 米 枚
歯数	Z		20	単ム1121未安火 、
圧力角	αn	deg	20.00000 *	またぎ歯厚
ねじれ角	β	deg	22 * 30 * 0.00 "	たが、小村法
ねじれ方向			右ねじれ 👻	面但用門凱爾厚
基準円直径	d	mm	43.2957	
歯厚入力方式			転位係数 🗸	
転位係数	xn		0.20000	
またぎ歯数	ZM		4	
またぎ歯厚	W	mm	21.64034	
測定較相径	dp	mm	3.56300	
オーバーボール寸法	dm	mm	49.11554	
歯直角円弧歯厚	Sn	mm	3.43277	
基礎円直径	db	m	40.2824	
歯先円直径	da	mm	48.0957	
歯底円直径	df	mm	39.0957	
歯幅	Ь	mm	20.0000	
歯先 R	ra	mm	0.2000	
基準ラック歯元R	rf	mm	0.7500 🛄	
(確定		キンセル クリア	
			図 14.5 歯車諸元	

項目	記号	単位	数 値
正面圧力角	αt	deg	21.50238
リード	PZ	mm	328.37509
転位量	×m	mm	0.40000
歯末のたけ	ha	mm	2.40001
歯元のたけ	hf	mm	2.09999
全歯たけ	h	mm	4.50000
基礎円筒ねじれ角	βb	deg	21.07593
歯先円筒ねじれ角	βa	deg	24.70885
キャリバ歯たけ	hj	mm	2.45806
キャリパ歯厚	sj	mm	3.43015
正面またぎ歯厚	₩a	mm	23.19176
正面円弧歯厚	St	mm	3.71560
正面歯溝円弧歯厚	Ut	mm	3.08527
歯直角歯溝円弧歯厚	Un	mm	2.85042
正面モジュール	mt	mm	2.16478
正面転位係数	xt		0.18478

今,図 14.4(d)の設定で「電極」として収縮率を図 14.7 のように 設定したとき、歯車寸法および電極寸法は図 14.8 のように決まり ます.

3 電極,型用補正諸元							
項目	ā	号	単位		敖 値		
モジュール収縮率		Sр		1	20.00		
圧力角補正率		a			0.00	/1000	
ねじれ角補正率	S	β		3.00			
故雷ギャップ		8	24 m		20.00		
歯幅	-	-	mm	20.00			
uu 18	_						
	L	隺定	JĽ	キンセル		クリア	
凶 14./ 电枢設定							
	교운	1446	1 8	(値(貴重)	数值(3	E45 7U)	
正面圧力角	at	des		21.50238	21.	.50238	
リード	PZ	mm		328.37509	336	.02972	
転位量	×m	mm		0.40000	0.	.40816	
歯末のたけ	ha	mm		2.40001	2.	.42899	
歯元のたけ	hf	mm		2.09999	2.	.16285	
全歯たけ	h	mm		4.50000	4.	.59184	
基礎円筒ねじれ角	βЬ	deg		21.07593	21.	.07593	
歯先円筒ねじれ角	βa	deg		24.70885	24.	.69111	
キャリパ歯たけ	hj	mm		2.45806	2.	.48823	
キャリバ歯厚	sj	mm		3.43015	3.	.45774	
正面またぎ歯厚	Wa	mm		23.19176	23.	.62177	
正面円弧歯厚	St	mm		3.71560	3.	.74536	
正面歯溝円弧歯厚	Ut	mm		3.08527	3.	.19431	
歯直角歯溝円弧歯厚	Un	mm		2.85042	2.	.95116	
正面モジュール	mt	mm		2.16478	2.	.20896	
正面転位係数	×t			0.18478	0.	.18478	

図14.8 歯車と電極歯車の寸法

14.6 工具諸元 (オプション)

歯切り工具は、ホブまたはピニオンカッタを選択することがで きます.工具寸法入力画面を 14.9 に、参考図を図 14.10 に、入力 した工具の実刃形を図 14.11 に示します.設定した工具による創 成歯形を図 14.12 および図 14.13 に示します.工具の種類は、14.2 の適用に示すように種々工具に対応しています.

プロチュバランスセミトッピングピニオンカッタの入力画面を 図14.14に,設定した工具による創成歯形を図14.12および図14.13 に示します.

14.7 歯形, 歯すじ修整 (オプション)

歯面修整を与える場合,図 14.17 で設定します.修整は,歯形 修整,歯すじ修整,歯形・歯すじ修整の3通りを選択することが できます.ここでは,歯形・歯すじ修整の例を示します.図 14.18 で歯形修整,図 14.19 で歯すじ修整を与えた結果を図 14.20 に示し ます.修整量の与え方は,図 14.18 の場合,数値を直接入力する こともパターン形状から入力することもできます.また,分割数 は最大 50 点まで設定することができます.

図 14.20 歯形・歯すじ修整の設定とトポグラフ

<u></u>

確定 キャンセル

図 14.26 では歯形修整1本と歯すじ修整1本を与えた例を示していますが、バイアス修整の場合は、図 14.21 のように歯形3本(5本も可能)、歯すじ1本で設定することができます.

図 14.21 バイアス修整とトポグラフ

14.8 軸方向直径修整(オプション)

軸方向直径修整は,例えば,2 段歯車を樹脂成型する場合,成 形時の収縮による歯幅方向の直径変化を補正するための機能です. 例として,図 14.22 のような直径変化があった場合の歯車は,図 14.23 のように表示することができます.

図 14.22 軸方向直径修整の 設定の例

図 14.23 基準歯形(青色)と 軸方向直径修整歯形(赤色)

14.9 真円度修整(オプション)

射出成形プラスチック歯車は、ゲートの位置によって完成した 歯車が真円形状になりません.対策としてゲート数を多くすれば 解決する場合もありますが余分な工数が必要となります.そこで、 本例では完成した歯車のゲート数が3ヶ所の成形歯車を想定し、 図 14.24 の楕円形状の歯車を考え、その逆形状の歯形を出力する と成形完成時に真円歯車が出来上がるものとしています.図 14.24 で修整量を 50µm、楕円の葉数、即ちゲート数を3として設定し ています (変更は任意可、最大 20).図 14.25 に真円度修整のグラ フを表示します.

図 14.25 真円度修整 2

図 14.26 歯形生成1は、歯形修整、歯すじ修整、真円度修整を 「正」としていますが、これは図 14.25 で設定した歯形をそのま ま出力するということです.これに対し、図 14.27 歯形出力2 は 修整方向を[逆]としています.これは与えた修整量の逆形状を出 力する意味です.即ち、この「逆」で金型を製作すれば完成時に 真円となることを目的としています.ただし、「逆」としても 100% 予測した通りにはなりませんので収縮率の程度を設定することが できます。例題では真円度のみ 80%とし、他は 100%としていま す.

14.10 2D 歯形図

図 14.28 は、図 14.20 の歯形・歯すじ修整を持つ歯形を図 14.25 で真円度修整を設定し、図 14.27 の[逆]で作図した歯形軌跡図です. 歯先部分の拡大図を図 14.29 に示しますが、これら歯先のずれは、 歯先修整と偏心により違いが現れ、図 14.29 の A の歯先のずれが 大きく、B と C は大きくずれていません. この理由は図 14.25 の 真円度修整量からも明らかです.図 14.28 の A 部のずれを図 14.30 のように距離計測すると 0.041mm の違いがあることが解ります. また、図 14.28 の補助フォームに示す R 計測機能は歯元形状の隅 部の大きさなどを計測する際には非常に便利です.

図 14.31 に測定ボール位置図を示しますが、これは低歯などを 測定する際、ボールと歯底が接触する場合があります. このよう なとき事前に確認することができるため現場でも有効に活用する ことができます.

14.11 歯形レンダリング

図 14.32 は、図 14.20 の歯形・歯すじ修整を持つ歯形を図 14.25 で真円度修整を設定し図 14.27 の[逆]で作図した歯形です.また、 図 14.33 の歯形レンダリングは、図 14.26 の[**正**]で作図しています ので図 14.32 と色合いが反転しています.

図 14.33 歯形レンダリングと補助フォーム

14.12 歯形ファイル出力

歯形ファイルは,図 14.37 のように DXF-2D, DXF-3D, IGES-3D, TEXT 2D を生成(任意歯数出力可)することができます.また,工具刃形も出力できます.図 14.38 および図 14.39 に CAD 作図例を示します.

14.13 カウンターラック歯形

図 14.37 の歯車(基準ラック創成歯形)を加工する場合のホブ 寸法を図 14.38 に示します.

🦉 歯車寸法諸元 💿 🔤					
項目	記号	単位	数值		
モジュール	In	m	2.00000		
歯 数	Z		20		
臣力角	an	des	20.00000 *		
ねじれ角	β	deg	22 * 30 ' 0.00 *		
ねじれ方向			右ねじれ ・		
基準円直径	d	n	43.2957		
歯厚入力方式			転位係数 ▼		
重动应该发展	xn		0.20000		
またぎ歯数	20		4		
またぎ歯厚	¥.	n	21.6403		
測定#14/徑	de	m	3.56300		
オーバーギール寸法	dn	nn	49.11554		
查直角円 測金厚	Sn	nn	3.43277		
基础円直径	db	m	40.2824		
凿先円直径	da	m	48.2000		
做應用直径	df	m	33,7000		
± %i	ь	m	20.0000		
歯先R	ra	m	0.0000		
基準ラック歯元R	rf	nn	0.7500		
(確定		NY2401 DIP		
図 14.37 歯車諸元 2					

🍓 カウンターラック歯形図 📃 🖃						
項目	記号	単位	致值			
刃末のたけ	ha	m	2.1978			
刃元のたけ	hf	m	2.0522			
全刃たけ	h	m	4.2500			
刃 厚	S	m	3.1416			
ピッチ	t	m	6.2832			
刃先R	- r -	m	0.7500			
図 14 38 ホブナ注						

14.14 設計データ管理

データベースは, Microsoft Access Database, Microsoft SQL Server そして ORACLE MySQL Server に対応しています. また, 旧ソフ トウェアの GearPro Master で作成した設計データの読み込みも可 能です.

※Microsoft SQL Server および ORACLE MySQL Server は、インストールされている必要があります。

◆成形研削用の砥石歯形の生成も可能です.詳しくは、別途お問い合わせください.