[3] involuteΣ(Worm Gear Design)

 \boxtimes 3.1 involute Σ (Worm Gear Design)

3.1 概要

involute Σ (Worm Gear Design)は、ウォームギヤ(ウォーム×ウォ ームホイール)の設計ソフトウエアです.ウォームとヘリカルギ ヤの組み合わせは involute Σ (Worm and Helical Gear Design)をご 使用ください.

3.2 ソフトウエアの構成

ソフトウエアの構成を表 3.1 に示します.

表 3.1 ソフトウエアの構成

項目	頁	適 用
<1>基準ラックの設定	15	0
<2>ウォーム歯形(1形)	15	0
<3>ウォーム歯形(3,4 形)	15	0
〈4〉工具(ホブ)設定	15	0
<5>歯形計算(標準)	16	0
<6>歯形計算(干渉)	16	0
〈7〉歯車寸法	16	0
<8>歯車かみ合い図(DXF)	16	0
<9>歯形レンダリング(表示)	16	0
<10>歯形レンダリング(取付け誤差設定)	16	0
<11>歯形レンダリング(バックラッシ角)	16	0
<12>歯形データファイル(DXF)	16	0
<13>歯形データファイル(3D-IGES)	16	0
<14>歯車強度計算(金属)	16	0
<15>歯車強度計算(POM)	16	0
<16>強度歯車計算(PA)	17	0
<17>歯車精度		0
<18>2D-FEM 歯形応力解析	17	0
<19>回転伝達誤差解析	17	0
<20>すべり速度	18	0
<21>ヘルツ応力	18	0
<22>フーリエ解析	18	0
<23>設計データ管理		0
<24>歯当たり解析	18	0
<25>軸受け荷重	18	0
<26>軸間距離変動解析	18	0
<27>ウォーム歯形修整	15	0
〈28〉ウォームホイール測定データ		0

3.3 アイコンボタン

アイコンは, [寸法][歯形][強度][FEM][伝達]など 18 種類あります.

3.4 基準ラックの設定

寸法初期設定では、①基準ラックの選択(並歯、低歯、特殊), ②ウォーム歯形(1形、3形、4形)、③歯形基準(軸直角、歯直 角)、④ウォームホイールの形状を選択します.図 3.2 に初期設 定画面を示します.

3.5 寸法設定

図 3.3 に寸法諸元の設定画面を示します.のどの丸み半径, 歯先円直径,歯底円直径,中心距離を変更することができます. また,歯厚減少量と横転位係数の関係は、いずれか一方を入力 することにより決定します.

∑ 寸法諸元				—	1
項目	記号	単位	ウォーム	ウォームホイール	
モジュール	mn	mm	2.	00000	
圧力角	an	deg	15.	00000	
条数, 歯数	Zw,Z2		2	41	
基準ピッチ円直径	d	mm	10.0000	89.4693	
すすみ角	Ϋ́	deg	23 * 3-	4 ' 41.4 "	
転位係数	X2	「 「		0.00000	∑ 9オーム修整諸元
のどの直径	dt	mm		93.4693	項目 記号単位 ウォーム
歯先円直径	da	mm	14.0000	97.1070	修整たけ Sa mm 0.5000
歯底円直径	df	mm	5.0000	84.4693	修整量 Sb mm 0.0500
設計中心距離	a	mm	49.	7347	OK Cancel ▼ 図表示
歯 幅	Ь	mm	36.5000	9.7000	Sb
ねじれ方向			右ね	Uh 🚽	
歯厚減少量	fn	mm	1.10000	-1.00000	a
横転位係数	Xh		-0.56940	0.51764	· · · · · · · · · · · · · · · · · · ·
理論ピン径	dp'	mm	3.5710	3.2793	·····
測定ピン径	dp	mm	3.5000	3.5000	
歯先 R	Ra	mm	0.5000		
▼ 約-4番形修整	確定	(† †)	til.		

図 3.3 寸法諸元設定とウォーム歯形修整

3.6 工具設定と寸法計算結果

ウォームホイール加工用のホブ諸元を設定します.ホブ取付 角の標準値は、軸方向ピッチを合わせた角度です.ホブの直径 およびホブ取付角によりホイールの歯形は変化します.3 形ウ ォームの歯形は砥石の直径により変化します.図3.4 に工具諸 元設定画面を、図3.5 にウォームギヤの寸法を示します.

Σ 工具諸元			×				
項目	記号	単位	数 値				
条数	zwH	·	2				
ピッチ円直径	dH	mm	30.0000				
すすみ角	γH	deg	7.66226				
取り付け角	βH	deg	15.91592				
取り付け中心距離	aH	mm	59.7347				
刃先R	RH	mm	0.2000				
砥石外径	Gd	mm	300.0000				
曜 定 キャンセ 							

図 3.4 ホブ諸元設定

▼ →注注田					
4 小広相来					
項目	記号	単位	ウォーム	ウォームホイール	
歯末のたけ	ha	mm	2.0000	2.0000	
歯元のたけ	hf	mm	2.5000	2.5000	
	h	mm	4.5000	4.5000	
クリアランス	ck	mm	0.5000	0.5000	
基礎円直径	db	mm		85.8746	
リード	PZ	mm	13.7110		
ピッチ	PX	mm	6.8555		
中心距離	a	mm	49.7347		
直径係数	Q		4.5826		
のど丸み半径	rt	mm		13.0001	
歯底幅	Wn	mm	1.8018		
キャリバ歯たけ	hj	mm	2.0395	2.0232	
理論弦歯厚	Sjo	mm	3.1416	3.1411	
設計弦歯厚	Sj	mm	2.0028	4.1764	
三針寸法(ピン~歯先)	dma	mm	12.8644		
三針寸法(ピン~ピン)	dm	mm	11.7287		
オーバーボール寸法	dmh	mm		97.4491	
正面かみ合い率	εa		1.	7090	

図 3.5 ウォームギヤ寸法

3.7 歯形計算

(1)標準歯形解析

図 3.4 で与えたホブでホイールの歯形を計算します.

(2) 干涉解析

すすみ角が大きい場合には、ウォームとホブのリードが異な るため歯当りが歯面中央に接触することがありません。干渉解 析は、干渉部分を除去するためのホブ刃形を解析します。詳し くは 3.20 ホブ刃形解析例をご覧ください。

Σ ś 🗖 🗉 🏊
④ 標準歯形
○ 干渉解析歯形
圖形計算 再初期

図 3.6 歯形計算

3.8 かみ合い図

ウォーム軸方向中央断面の歯形を図 3.7 に示します. この平 面図で歯形が食い込んでいない場合でも,中心部以外の歯面で 干渉している場合があります.干渉や組み立て誤差による歯当 りは, 3.9 の歯形レンダリングで確認することができます.

図 3.7 かみ合い図 (軸中央断面)

3.9 歯形レンダリング

図 3.7 で干渉がない歯形でも歯形レンダリングでは、図 3.8 および図 3.9 のようにホイール歯面で大きく干渉をしていることが解ります.図 3.10 に、歯形レンダリングのコントロールフ

オームを示します. X,Y,Z 軸回転角で観察角度を変更すること ができ、Z 軸移動量で図の拡大,縮小が可能です.また,ウォ ームの軸角やウォーム軸位置のずれによるかみ合いを観察する ことができます.

コントロールフォームの機能1は、①ウォーム軸角調整、② ウォーム軸位置、③中心距離の調整ができ、コントロールフォ ームの機能2は、バックラッシ角度を表示します。

図 3.8 歯形レンダリング(左)

 国形ファイル出力

 2 Dかみあい図(DXF)

 3 Dかみあい図(DXF)

 エ具刃形(DXF)

 ウォーム(IGES)

 ウォーム(IGES)

 保存

 (キャンセル)

 図 3.11 歯形ファイル

図 3.10 コントロールフォーム

3.10 歯形データファイル

ウォームとホイールの歯形は,図 3.11 に示すように4種類の 歯形 CAD データファイルを出力することができます.図 3.12 は、ウォームとホイール歯形の CAD 作図例です.

3.11 強度計算初期設定

ウォームホイールの材料を図3.13で選択することができます. 図 3.14 に金属材料の選択画面を示します.

金属歯車の強度計算は,

JGMA405-01:1978 に基づいて 計算します. 樹脂歯車の曲げ 強度計算は, Lewis の式を基 本とし, 歯面強さはヘルツの 式の応力に基づいて計算しま す.

図 3.13 強度初期設定(材料選択)

Σ 金属材料			×		
ウォームホイール	ウォーム	Sclim	Vlim		
りん青銅遠心鋳造品	<u>合金網浸炭焼き入れ</u>	1.55	30.0		
	合金網 HB400	1.34	20.0		
	合金網 HB250	1.12	10.0		
りん青銅チル鋳物	<u>合金細浸炭焼き入れ</u>	1.27	30.0		
	合金細 HB400	1.05	20.0		
	合金細 HB250	0.88	10.0		
りん青銅砂型鋳物	<u>合金網浸炭焼き入れ</u>	1.05	30.0		
または	<u>合金網 HB400</u>	0.84	20.0		
鍛 造 品	合金網 HB250	0.70	10.0		
アルミニウム春銅	<u>合金細浸炭焼き入れ</u>	0.84	20.0		
	合金細 HB400	0.67	15.0		
	合金細 HB250	0.56	10.0		
黄 銅	合金網 HB250	0.42	5.0		
普通铸鉄	鍛造品		2.5		
Vlim:焼付限界滑り速度(m/s) 確定 <mark>キンリ</mark>					

図 3.14 金属材料の選択

3.12 強度計算

図 3.15 に樹脂(PA)材料(オプション)の強度設定画面を示しま す. 図 3.16 に樹脂材料, 図 3.17 に金属材料の強度計算結果を示 します.

∑ 樹脂(PA)強度諸規	τ				×				
項目	記号	単位	ウォーム	ウォームホ	7-16				
トルク	T	N•cm 💌	20.000	351	3.247				
回転数	n	rpm	600.000	2	9.268				
寿命繰り返し回数			100	00000					
潤滑状態	[]		グ!	ス	•				
周囲温度	t	°C	6	0.000	樹脂(PA)	材料任意入;	ታ		
曲げ安全率	SF			1.200	J.	18	記号	単位	93~667~16
面圧安全率	SH			1.150	1 5º	ロチ	Ε ν	MPa 	2095.795
せん断安全率	SS			1.200	許容問	げ応力	σb	MPa	19.029
摩擦係数	μ			0.0500	許容せ	ん断応力	Ø s	MPa	11.417
, 	Ē	。 曜 定】 ╄))tille		1 1+87	ルッルのJJ 樋	OH 定	mra \$eytelk	20.241

図 3.15 樹脂(PA)の強度諸元設定

Σ 樹脂(PA)強度結果	R		X
項目	記号	単位	数 値
周速		m/s	0.137
効 率	ηR		0.874
有効歯幅	bw	mm	9.700
接線力	Ft	N	80.083
荷重分配係数	Yε		0.585
ウォームホイール曲げ強	đ		
弾性率	E	MPa	2095.795
歯形係数	YF		0.884
潤滑係数	KL		1.315
許容曲げ応力	σb	MPa	19.029
許容接線力	Fa	N	507.106
曲げ強さ	Sfb		6.332
ウォームホイールのせん断	強さ		
円弧歯厚	So	mm	4.759
断面積	A	m m²	87.164
許容せん断応力	σs	MPa	11.417
許容接線力	Fs	N	829.293
せん断強さ	Sfs		10.355
ウォーはイールの歯面引	動き		
ヘルツ応力	σH	MPa	19.909
許容ヘルツ応力	σHlim	MPa	20.241
歯面強さ	Sfh		1.034

図 3.16 樹脂(PA)の強度結果

Σ 強度計算結果(金)	寓)	—	
項目	記号	単位	数 値
滑り速度	٧s	m/s	0.343
効 率	ηR		0.847
領域係数	Zo		0.792
滑り速度係数	Kv		0.637
回転速度係数	Kn		0.690
呼び接線力	Ft	N	77.625
許容接線力	Ftlim	N	1609.191
歯面強さ	Sfc	·	20.730

図 3.17 金属の強度結果

3.13 FEM 歯形応力解析

強度計算終了後、[FEM]アイコンをクリックするだけで簡単 に応力解析を行うことができます. 図 3.18 に FEM 解析の設定 画面では縦弾性係数, ポアソン比, 分割数および荷重の数値変 更をすることができます.図 3.19 と図 3.20 にウォームとホイー ルの FEM 解析結果を示します.

Σ FEM 解析諸	沅			, • 💌		
項目	記号	単位	ウォーム	ウォームホイール		
材料記号			金属	MCナイロン		
(縦弾性係数)	E	MPa	205800.0	2095.8		
「ポアソン比」	ν		0.300	0.350		
1 縦分割数	Vd		12	12		
横分割数	Hd		25	23		
荷重点位置	Pn		2	2		
荷重	Ft	N	80	1.083		
色階調数	nc		100			
変位倍率	Sd		100]		
樹脂(PA) ▼ 確 定 キャンセル						

3.14 伝達誤差解析

図 3.21 および図 3.22 に伝達誤差解析の設定画面を示します. ウォームとホイールにピッチ誤差、軸の振れを与え、ウォーム を1回転させたときの回転伝達誤差解析結果を図3.23に、ワウ・ フラッタを図 3.24 に示します.次に、ホイールを1回転させた ときの回転伝達誤差解析結果を図 3.25 に、ワウ・フラッタを 図 3.26 に示します.

Ê

Rotational Time=0.0000 Wow & Flutter =-0.049

•

図 3.24 ワウ・フラッタ1

0.025 0.050 0.075 Worm Rotational Time(sec)

Þ

Max W.F= 0.198 Min W.F= -0.229

w4444

hopper

3.15 周波数解析

ウォームを1回転させたときの周波数解析結果を図 3.27 に, ホイールを1回転させたときの周波数解析結果を図 3.28 に示し ます.

3.16 ヘルツ応力変化とすべり速度

ウォームを1回転させたとき,歯面に発生するヘルツ応力を 図 3.29 に,その時のすべり速度グラフを図 3.30 に示します. このグラフは,伝達誤差解析後に有効です.

3.17 軸間距離変動

両歯面かみ合い試験機のようにウォームとホイールの歯面を 押しつけ合いながら回転させたときの中心距離変動をシミュレ ートします. その結果を図 3.31 (円グラフ) および図 3.32 (折 れ線グラフ) に示します.

3.18 軸受け荷重

軸受け荷重の設定画面を図 3.33 に,計算結果を図 3.34 に示します.

Σ 軸受荷重結果							
「くウォーム、ウォーはイーはこ	取わるナ	3><					
項目	記号	単位	ウォーム	ウォームホイール			
円周方向に加わる力	Ft	N	40.000	80.083			
軸方向に加わる力	Fa	N	80.083	40.000			
半径方向に加わる力	Fr	N	23.954	23.954			
「<ウォーム側 軸受けに加	わる力	>					
項目	記号	単位	Brg al	Brg a2			
スラスト荷重	Faa	N	80.083				
Ft のラジアル荷重分力	Fra1	N	20.000	20.000			
Fr のラジアル荷重分力	Fra2	N	11.977	11.977			
Fa のラジアル荷重分力	Fra3	N	-10.010	10.010			
ラジアル荷重合力	Fra	N	20.096	29.723			
「<ウォームホイール側 軸受けに加	わるカ	>					
項目	記号	単位	Brg bl	Brg b2			
スラスト荷重	Fab	N	4	0.000			
Fr のラジアル荷重分力	Frb1	N	11.977	11.977			
Ft のラジアル荷重分力	Frb2	N	40.041	40.041			
Fa のラジアル荷重分力	Frb3	N	-44.735	44.735			
ラジアル荷重合力	Frb	N	51.734	69.423			
<u>X</u>	3 34	나計	·筧結果	<u>l</u>			

図 3.33 軸荷重の設定

3.19 歯当たり解析

ウォームの歯当たり解析例を以下に示します.図3.35の、歯 当たり解析設定で種々設定が可能です.回転位置分割数は3~ 20を設定することができますが、本例では4として図3.3 歯車 の歯当たりを解析しています.図3.36は、ウォームとホイール の歯当たりを示しますが、図3.37~3.40に1/4ピッチの歯当り4 種類を示します.ただし、歯当たり解析は、歯のたわみとピッ チ誤差は考慮していません.

図 3.8 の歯形レンダリングと図 3.36 の歯当たり紋様が若干異なります.この理由は、本例ではホイールの歯形レンダリングの歯形分割数の2倍(最大5倍)の細かさで歯当たり解析をしているためです.

Σ 歯当り解析							
項目	記号	単位	モデドル				
ホイール回転角度	θr	deg	0.0000				
ホイール操作角度	θs	deg	0.0000				
ウォーム角度誤差X	$\Delta \phi \times$	deg	0.0000				
ウォーム角度誤差Y	Δ¢y	deg	0.0000				
ウォーム角度誤差Z	Δ¢z	deg	0.0000				
ウォーム取り付け誤差X	ΔΧ	mm	0.0000				
↓ ウォーム取り付け誤差Y	ΔΥ	mm	0.0000				
ウォーム取り付け誤差Z	ΔZ	mm	0.0000				
ウォーム座標識分割数			0				
ホイール座標舗の割数			1				
食い込み限界距離		μm	200				
回転位置分割数			4				
設定値確認モデル解析	設定値確認モデル解析 歯当り表示 歯当り数値						
○ ビッチ歯当り(複数の回転位置で計算)							
 固定位置歯当り(回転角度 θr位置のみで計算) 							
色分布最大距離		μm	200				

図 3.35 歯当たり解析設定

図 3.36 歯当たり(ウォーム&ホイール)

図 3.36 の色階調で歯当たり量を確認することができますが、 更に,図 3.35 の[歯当たり数値]で図 3.41 のように詳細な歯当た り数値を確認することができます。画面下のコントロールバー で回転位置(本例の場合1~4)での歯当りを表示します.

3.20 ホブ刃形解析例¹⁾

3.20.1 はじめに

ウォームとウォームホイールのかみあい時の歯当たりは、ウ ォームの歯形およびウォームホイールを加工するホブの影響を 受け、特にウォームのすすみ角が大きい場合やウォームとホブ の直径差が大きいと歯当たりは大きく偏ることになる. この原 因は、ウォームとホブのリード差が原因であり正しい歯当たり を得るためにはホブの歯形を修正することにより解決すること ができる.以下に、本ソフトウェアを使用して、ウォームギヤ の歯当たりとバックラッシについて検討した結果を示す.

3.20.2 検討歯車

検討歯車の諸元を表 3.2 に示す. ウォームのピッチ円直径 12mmに対し、ウォームホイールを加工するホブ(図 3.42)のピッ チ円直径は36mmのため、軸方向ピッチを合わせるために、ホ

ブのセット角は
14.5916(deg) と
なる.

表 3	3.2 ウ	オーム	ギヤ	諸元
-----	-------	-----	----	----

Item	Symbol	Unit	Worm	Wheel
Wormtype			1 and 4	
Module	mn	mm	1.8	
Pressure angle	αn	deg	14.5	
Number of starts	Z_{W}		2	
Numberofteeth	Z			40
Pitch circle dia.	d	mm	12.000	75.4765
Lead angle	N	deg	17.4576	
Addendummodifi- cationcoefficient.	xn			0.2
Center distance	a	mm	44.0983	
Tooth thinning for backlash	.fn	mm	0.871	-0.871

3.20.3 歯形レンダリング

1 形ウォームとウォームホイールの歯形レンダリングを 図 3.43 および図 3.44 に示す. 無修整ホブの場合, 3 箇所に大き な干渉が発生しているが、修整ホブを使用した場合は、干渉が 無く歯面中央付近のかみ合いとなる.

3.20.4 ホブの直径とバックラッシの関係

無修整ホブの直径を 12mm から 100mm まで変化させたとき のバックラッシ変化量を図 3.45 に示す. この場合,ホブ直径が 18mm で最も多くの干渉が発生し、ホブ直径が大きくなるに従 い干渉量は少なくなる. 修整ホブ(図 3.47)によるバックラッシ 変化量は、図3.46に示すように大きく改善されほぼ一定となる.

1) MPT2001-Fukuoka, アムテック(2001)より抜粋