[2] involute Σ Bevel Gear Design System

Fig. 2.1 involuteΣ Bevel Gear Design System

2.1 Introduction

The *involute* Σ Bevel Gear Design System is a complete design system for bevel gears. It offers Gear Dimension, Strength Calculation (Metal or Resin), Tooth Profile Rendering, Assembly Drawing, Bearing Load Calculation, Sliding Ratio Graph, Hertzian Stress Graph, Profile Tooth Stress Analysis, Tooth Contact Area Display, Measurement Data Output, and many other features.

2.2. Software Features

Table 2.1 shows the available software features offered.

Table 2.1. Software Features

Item	Page	Straight	Spiral	
<1> Gear Dimension	8	С)	
<2> Gear Meshing Drawing	8	С)	
<3> Gear Assembly Drawing	8	С)	
<4> Tooth Profile DXF File Output	8	С)	
<5> Strength Calculation (Metal)	9	С)	
<6> Strength Calculation (Resin)		С)	
<7> Gear Accuracy	9	С)	
<8> Design Data Control		С)	
<9> Tooth Profile Rendering	10	С)	
<10> Sliding Ratio Graph	11	Ô)	
<11> Hertzian Stress Graph	11	Ô)	
<12> Crossed Axes Angle (Acute)	11	Ô)	
<13> 3D Tooth Profile Coordinate Output	10	Ô)	
<14> Tooth Profile IGES File Output ¹⁾	11	0		
<15> Tooth Profile IGES File Output for FEM	11	Ô)	
Analysis ¹⁾				
<16>Assembly Error Simulation	11	Ó)	
<17> Over-Ball Diameter Measurement ¹⁾	10	0	×	
<18> 2D-FEM Tooth Profile Stress Analysis ¹⁾	10	0	×	
<19> Tooth Profile Measurement ¹⁾	11	\odot		
<20> Tooth Contact Area ¹⁾	11	Ô)	
<21> STL File Output ¹⁾	11	Ô)	
<22> Crossed Axes Angle (Acute)		0)	
<23> Chamfer Shape	9	Ô)	
<24> Kick Out Graph	10	Ó)	
<25> Minimum of 9 Teeth		Ó)	

○ (Supported as standard) ◎ (Optional)

1) "<13> 3D Tooth Profile Coordinate" software is required.

2.3 Icon Buttons

The toolbar contains 13 icon buttons including [Dimension], [Assembly], [Profile], and [Rendering].

2.4 Supported Gear Types

The System supports 14 types of bevel gears: six spur bevel gears and eight spiral bevel gears. Fig. 2.2 shows the supported bevel gear types.

Type of bevel gears	
Straight bevel gear	Spiral bevel gear
C Standard depth	C Taper depth (AGMA2005-B88)
O Parallel clearance	O Uniform depth (AGMA2005-B88)
Taper depth (AGMA2005-B88)	C Zerol (AGMA2005-B88)
O Uniform depth (AGMA2005-B88)	C Taper depth (AGMA209.04)
O AGMA 208.03	O Uniform depth (AGMA209.04)
C Gleason (for automobile)	O Gleason (1960)
Conical surfaces	C Gleason (Under 11 teeth)
Standard depth taper	C Zerol (AGMA202.03)
O Duplex taper	OK Cancel

Fig. 2.2 Supported Bevel Gear Types

2.5 Gear Dimensions

Selecting a bevel gear type in Fig. 2.2 displays the Gear dimension input screen as shown in Fig. 2.3. After specifying the module and number of teeth of the pinion/gear, pressing the TAB key sets the default values for the remaining items (editable). The System not only supports shaft angles of other than 90 degrees, but also calculates the inclined and constant height teeth.

The Modified gear dimension input screen shown in Fig. 2.4 allows the user to specify the tip modification and crowning data and change the tip and root angles of the bevel gear as desired.

E Gear items					
Classification of bevel gear			AGMA 208.03		
Description	Symbol	Unit	Pinion	Gear	
Transverse module	mt	mm	2	2.0000	
Number of teeth	z		12	20	
Pressure angle	Alpha n	deg	20.0000		
Spiral angle	Beta m	deg	0 °	0 ' 0 "	
Direction of spiral					
Shaft angle	Sigma	deg	90 °	<u> </u>	
Face width	b	mm	7.0000		
Gear accuracy(JIS B 1704)			3 3		
Outer circular thickness	S	mm	3.5702	2.7130	
Cutter radius	rc	inch	-		
Cutter tip radius	ro	mm	0.2400	0.2400	
OutsideWhole depth	h	mm	4.4260		
OutsideWorking depth	he	mm	4.0000		
OutsideAddendum	ha	mm	2.5888	1.4112	
OutsideDedendum	hf	mm	1.8372	3.0148	

Fig.	2.3	Gear	Dimension	Input	Screen
------	-----	------	-----------	-------	--------

Tooth modifications						
Face width partitions(hu)	þ	T	ooth depth p	artitions(v	u)	50
Description	Symbol	Unit	🗵 Pinion		×	Gear
Tip radius	Rtip	mm	0	.2000		0.2000
Heel crowning radius	Crwh	mm	24	.0000		40.0000
Heel crowning quantity	Crh	mm	0	.0000		0.0000
Toe crowning radius		<u> </u>	1.	0000		40.0000
Toe crowning quantity	8f_	-And	<u> </u>	0000		0.0000
Heel tip modify value		Z8a		0000		0.0000
Heel tip modify depth	1 1	うた		0000		0.0000
Tip angle		\sim	, ,	3289 °		63.5401 °
Root angle	Delta f	deg	26	.4599 °		51.6711 °
Reference figure	[OK	Cancel			

Fig. 2.4 Modified Gear Dimension Input Screen

2.6 Gear Dimensions Calculation

The calculated dimensions of the bevel gear are displayed in the Gear dimension calculation result screen shown in Fig. 2.5.

E Gear dimensions					
Description	Symbol	Unit	Pinion	Gear	
Outer cone distance	Re	mm	23	3.3238	
Pitch diameter	d	mm	24.0000	40.0000	
Outside diameter	dae	mm	28.4398	41.4521	
Inside diameter	dai	mm	19.6851	28.8798	
Pitch cone angle	Detta	deg	30 ° 57 ' 50 "	59 ° 2 ' 10 "	
Addendum	ha	mm	2.5888	1.4112	
Dedendum	hf	mm	1.8372	3.0148	
Clearance	С	mm	0.4260	0.4260	
Addendum angle	Theta a	deg	7 ° 21 ' 55 "	4 ° 30 ' 14 "	
Dedendum angle	Theta f	deg	4 ° 30 ' 14 "	7 ° 21 ' 55 "	
Tip cone angle	Detta a	deg	38 ° 19 ' 44 "	63 ° 32 ' 24 "	
Root cone angle	Delta f	deg	26 ° 27 ' 36 "	51 ° 40 ' 16 "	
Working depth	he	mm	4.0000		
Whole depth	h	mm	4.4260		
Distance of outside tip from conic top	X	mm	18.6681	10.7899	
Axial face width	Xb	mm	5.5369	3.1287	
Circular thinning for backlash	fn	mm	0.0000	0.0000	
Backlash	BL	mm		0.0000	
Tooth angle		min	361.6955	361.6972	
Material angle	Theta x	deg	82 ° 38 ' 6 "	85 ° 29 ' 46 "	
Material angle	Theta y	deg	59 ° 2 ' 10 "	30 ° 57 ' 50 "	
Chordal thickness	Sj	mm	3.5570	2.7109	
Chordal addendum	Hj	mm	2.7027	1.4349	
Equivalent number of teeth	Zv		13.9943	38.8730	
Transverse contact ratio	Epsiro alpha		1	L.3896	
Overlap ratio	Epsiro beta			0.0000	
Total contact ratio	Epsiro gamma		1.3896		

Fig. 2.5 Calculated Gear Dimensions

2.7 Gear Assembly Drawing

As shown in Fig. 2.6, assembly drawings can be produced by specifying the length and boss diameter information on the pinion and gear pair. Fig. 2.6a is an example of chamfering the outer diameter and boss ends of the pinion for the forging process. In addition, Fig. 2.7 and Fig. 2.8 are drawing examples for setting the shaft angle to 70 degrees and 120 degrees, respectively. Assembly drawings can be output in the DXF file format.

Fig. 2.6 Gear Assembly Drawing and Settings

Fig. 2.6a Gear Assembly Drawing and Settings (Chamfering)

Fig. 2.7 Assembly Drawing (Shaft Angle = 70°)

Fig. 2.8 Assembly Drawing (Shaft Angle = 120°)

2.8 Gear Profile Drawing

Gear profile drawings showing how the gear is meshed with the pinion at the outer end, center, or inner end can be drawn. Fig. 2.9 is a gear profile meshing drawing for the outer end.

2.9 Assembly Error Simulation

Improperly assembled gear pair would cause the variation of the point of contact when the pinion and gear are in mesh. By setting the Assembly Error Simulation, the user can observe this variation using the Tooth Profile Rendering and Tooth Contact Variation features to evaluate the impact of horizontal, vertical, angular, and offset errors in the gear assembly.

Fig. 2.10 Assembly Error Simulation Settings

2.10 Tooth Profile Rendering

3D tooth profiles of the pinion and gear in mesh can be generated as shown in Fig. 2.11. The generated tooth profiles will be based on spherical involutes and theoretical leads. The viewing angle of the image can be changed using the control form shown in Fig. 2.11. Setting the meshing step angle to "1" causes the pinion to rotate in increments of 1 degree; entering "0" produces a still image. The generated profile images are scalable.

Fig. 2.12 and Fig. 2.13 show the 3D rendering images that represent the tooth profiles of spiral bevel and Zerol gears, respectively.

Fig. 2.11 Tooth Profile Rendering Image and Settings

Fig. 2.12 Spiral Bevel Gears

Fig. 2.13 Zerol Gears

2.11 Tooth Contact Variation

Fig. 2.14 shows the point of contact on the pinion tooth flank when crowning is specified on the Modified gear dimension input screen in Fig. 2.4. The pinion will be completely in contact with the gear at the flank area shown in red but, in blue area, there is a clearance of 50- μ m from the tooth flank of the mating gear. The user can change the pinion rotation angle in the control form to see how the contact area moves. Fig. 2.14a and Fig. 2.14b show contact area of spiral bevel and zerol pinions, respectively.

Fig. 2.14 Tooth Contact Area (Straight Bevel)

Fig. 2.14a Tooth Contact Area (Spiral)

(Zerol)

2.12 Kick Out Graph

The Kick Out feature simulates the circumferential play ("kick out") in the gear from the start to the end of meshing with the pinion. As shown in Fig. 2.15, the kick out value is only "0.0007" degree when the gearshaft mounting error is 0. However, changing both the horizontal and vertical errors in gear shaft mounting to 5μ m in Fig. 2.10 will increase the kick out value to "0.0093" degree as shown in Fig. 2.16, significantly changing the kick-out curve.

2.13 Tooth Profile Data Output

As shown in Fig. 2.17, the user can choose to output the assembly drawing, 3D tooth profile, or 3D meshing tooth profile image into a data file. Fig. 2.18 is an example of a 3D pinion tooth profile output file displayed in a CAD system. Fig. 2.19 is an example of 3D meshing tooth profile image output for FEM analysis, where the tooth profile data will be output into separate files for the left/right flank and tip portions.

2 Output gear data	\mathbf{X}
🦵 Gear set 🛛 🔽 3D tooth	3D contact tooth
3D tooth profile data C Pinion C Ge	ar 🗖 Text
Polygon mesh 🔻	
Polygon mesh	
Lead division Depth division	Cancel

Fig. 2.17 Tooth Profile Data File Output

2.14 Gear Strength Calculation

(1) Torque Unit Setting (N·m, N·cm, kgf·m, kgf·cm, gf·cm)

Fig. 2.20 shows the Torque unit tab of the Initial strength calculation settings screen.

🔺 Initialize gear strength 📃 🗖 🗙								
Torque unit Metallic material Plastic material								
V Metal gear strength								
	C N m	N cm						
Torque unit	C kgf m	C kgf cm						
Plastic gear stre	Plastic gear strength							
Taurus und	💿 N.cm							
Torque unit	C kgf cm	C gf cm						
OK Cancel								

Fig. 2.20 Initial Strength Calculation Settings Screen (Torque Unit Tab)

(2) Bevel Gear Strength Calculation

The System calculates the strength of metal gears based on the JGMA 403-01 and 404-01 standards. For resin gears, the calculation of the bending strength is based on the Lewis formula and the strength of the tooth flank on the Hertzian stress.

(3) Materials

Fig. 2.21 shows the Metal material tab of the Initial Strength Calculation Settings screen. The stress values shown in the Resin material tab are experimental values taking into account the temperature and life cycle of the resin material.

The applicable materials are M90, KT20, and GH25. The characteristics of other material can be calculated based on M90.

🗖 Initialize gear strength 📃 🗖 🔀								
Torque unit Metallic material Resin material								
-Pinion material								
Material nam	e	carburization	n hardening 💽					
Material sym	iol	SCM420 -						
Sigma Flim	MPa	490.5						
Sigma Hlim	MPa	1530.0	Reference					
Central hardness	HV	358						
Surface hardness	HV	580						
Gear material								
Material nam	e	high frequend	y hardening 💽					
Material sym	ol	SCM440 💽						
Sigma Flim	MPa	284.5						
Sigma Hlim	MPa	1128.0	Reference					
Central hardness	HV	2.63						
Surface hardness	HV	540						
OK Cancel								

Fig. 2.21 Initial Strength Calculation Settings Screen (Metal material Tab)

(4) Material Selection

Clicking the [Reference] button in Fig. 2.21 displays the material selection screen as shown in Fig. 2.22. On this screen, the user can determine the allowable stress value for the material based on the hardness values shown in the list. The material symbol and the allowable stress (δ_{Flim} , δ_{Hlim}) and hardness values can be specified directly on the Metal material tab.

Fig. 2.22 Material Selection (Reference Screen)

(5) Strength Setting (Dynamic)

Fig. 2.23 shows the metal strength setting screen, on which the user can specify the input torque, speed, and other data.

Metal gear strength items					
Description	Symbol	Unit	Pinion	Gear	
Torque	T	N m	5.000	8.333	
Rotational speed	n	rpm	1000.000	600.000	
Life cycles	L		1000000		
Tooth surface roughness		Microm	6.000	6.000	
Crowning			Conduct	Conduct	
Shaft rigidity and Gear holding			A Type		
Lubricating oil coefficient	ZL		1.000		
Over load factor	Ко		1.0	000	
Root bending strength reliability coefficient	KR		1.200		
Face intensity reliability coefficient	CR		1.1	.50	
Tool diameter influence coefficient	Yc		1.1	.50	
OK Cancel					

Fig. 2.23 Dynamic Strength Setting

(6) Strength Calculation Result

Fig. 2.24 shows the Metal gear strength calculation result screen.

Metal gear strength result						
Description(bending)	Symbol	Unit	Pinion	Gear		
Circumferential speed	V	m/s	1	.2566		
Allowable bending stress	σFlim	N/mm2	490.5000	284.5000		
Tooth form factor	YF		2.6846	3.3471		
Load distribution coefficient	Yε		0	.6556		
Helix angle factor	Yβ		2	.0000		
Life factor	KL		1.0000	1.0000		
Size factor	KFx		1.0000	1.0000		
Load distribution factor(lead)	KM		1	.2000		
Dynamic load factor	KV		1	.0385		
Tangential force power	Ft	N	490.2314			
Allowable tangential force	Ftlim	N	1638.9787	762.4947		
Tooth root bending stress	σF	N/mm2	146.7124	182.9138		
Bending strength(Ftlim/Ft)	Sft		3.3433	1.5554		
Description(pitting)	Symbol	Unit	Pinion	Gear		
Allowable pitting stress	σHlim	N/mm2	1530.0000	1128.0000		
Region factor	ZH		2	.4946		
Material property factor	ZM		60	.6000		
Contact ratio factor	Zε		3	.0000		
Life factor	KHL		1.0000	1.0000		
Roughness factor	ZR		0.9201	0.9201		
Smooth velocity factor	ZV		0.9558	0.9558		
Hardness ratio factor	ZVV		1.0000	1.0000		
Load distribution factor	KH /S		1.3000			
Dynamic load factor	CV		1.0385			
Tangential force power	Fc	N	490.2314			
Allowable tangential force	Folim	N	554.0296	301.1399		
Hertzian stress	σH	N/mm2	1439.2144	1439.2144		
Pitting strength(Fclim/Fc)	Sfc		1.1301	0.6143		

Fig. 2.24 Metal Gear Strength Calculation Result Screen

2.15 Gear Accuracy

Fig. 2.25 shows the error tolerance for bevel gears as per the JIS B 1704 standard.

💶 Bevel gear accuracy 🛛 🔀							
Description	Symbol	Unit	Pinion	Gear			
Single pitch deviation (+-)	ft	Micro-m	24	25			
Pitch deviation	ftu	Micro-m	31	33			
Total cumulative pitch deviation (+-)	Ft	Micro-m	97	100			
Radial run-out	fr	Micro-m	33	48			
ACCURACY for Gear (JIS B 1704) : JAPANESE INDUSTRIAL STANDARDS.							

Fig. 2.25 Gear Accuracy

2.16 Sliding Ratio and Hertzian Stress Graphs

Fig. 2.26 and Fig. 2.27 show the sliding ratio and Hertzian stress graphs for a bevel gear pair, respectively.

2.17 FEM Tooth Profile Stress Analysis

Fig. 2.27 Hertzian Stress Graph

30

Stress analysis can be easily performed by simply clicking the [FEM] button after the strength calculation. Fig. 2.28 shows the FEM analysis setting screen. The user may change the Young modulus, Poisson ratio, number of partitions, and load values.

This System supports five types of stresses ($\acute{o}_x,\,\acute{o}_y,$ shear stress ô, and principal stresses ϕ_1 , ϕ_2). The reliability of a gear pair can be improved by calculating the gear strength and then evaluating the actual stress on the tooth flanks. Fig. 2.29 and Fig. 2.30 show the equivalent stress curves for the maximum (ó₁) and minimum (ó₂) principal stresses, respectively.

EFEM analysis items				
Description	Symbol	Unit	Pinion	Gear
Material symbol			SCM420	SCM440
Elastic modulus	E	MPa	205800.0	205800.0
Poisson ratio	Up		0.300	0.300
Height partitions	Vd		8	8
Width partitions	Hd		22	19
Load point position	Pn		2	2
Load	Ft	N	490	0.231
Number of the color tone	nc		100)
Magnification of the displacement	Sd		100)
Metal -	ОК	Cancel		

Fig. 2.28 FEM Analysis Settings

Fig. 2.29 Maximum Principle Stress (ó1)

Fig. 2.30 Minimum Principle Stress (ó₂)

2.18 Bearing Load Calculation

The System calculates the loads exerted on both the gear and bearings.

|OK| Xr

Fig. 2.31 Loads on Gear Tooth Flanks

Fig. 2.32 Loads on Bearings

2.19 Tooth Profile Measurement

The System produces measurement data that can be used on either Zeiss 3D measuring systems or Osaka Seimitsu Kikai's measuring machines. Specify whichever you prefer when ordering the System.

(1) Outline of Measurement Data for Zeiss 3D Measuring Systems

Fig. 2.33 shows the setting screen for Zeiss 3D measuring systems. Specifying the number of partitions along with the relief amount and standard distance values for measurement causes the System to output the measurement point coordinates and vectors as shown in Fig. 2.34 into a data file.

Settings

(2) Outline of Measurement Data for Osaka Seimitsu Kikai Measuring Machines

Specifying the measuring data as shown in Fig. 2.35 causes the software to output the nominal measurement data into a data file. The manufacturer's catalog says that the measuring machines (HyB-35 and HyB-65) perform "linear" measurement, rather than "point-to-point" measurement, for precision measurement. Unlike the grid-point based measurement used in the 3D measuring systems, these machines linearly measure up to the edge of each tooth to detect subtle profile errors for improved gear accuracy.

OSK HyB-35 measurement data output						
HyB registered number	123					
Date	07/12/26					
Note	ABC					
Summary number	12345					
Measurement position	Pinion	Gear				
Setting distance (mm)	18.6681	10.7899				
Measuring Offset(mm)	5.0000	5.0000				
Setting distance		X Measuring Offset				
jOK Cancel						

Fig.2.35 Measurement Data Settings

2.20 Ball Height Measurement

Ball height measurement is a technique to control the tooth thickness of a gear, in which the measurement is made with respect to the ball placed around the center of the gear face width. This technique is suitable for controlling the gear tooth thickness in the manufacturing phase. Fig. 2.36 shows how the ball height of a bevel gear is measured.

Fig. 2.36 Ball Height Measurement

2.21 Manufacturing Examples

Fig. 2.37 is an example of a gear set machined using an NC ball-end milling machine with tooth profile data generated by this System. (The tooth profile data was imported into a CAD/CAM system before loading into the NC machine). Fig. 2.38 is a photograph of a photofabricated gear model.

Fig. 2.37 Example of Machined Gear Pair

Fig. 2.38 Photo fabricated Gear Model (m1, NT28, $\alpha 20^{\circ}$, $\beta 35^{\circ}$)