[21] involute Σ iii (Hypoid gear design system)

図 21.1 L-Hypoid gear design system

21.1 概要

旧ソフトウェアの L-Hypoid gear design system は、新しいソフト ウェアの involute Σ iii (hypoid gear design) に変わりました。本ソ フトウェアは、寸法、歯形、強度計算をトータルに設計すること ができます.

ハイポイドギヤの歯形,歯すじは,歯切り盤から生成されるも のですが,本ソフトウェアでは,球面インボリュート歯形を持つ スパイラルベベルギヤ(大歯車)またはピニオン(小歯車)にオ フセットを与え相手歯車の歯形を解析し1組の歯車としています. 図 21.1 に全体画面を示します.

21.2 ソフトウェアの構成

involute Σ iii (hypoid gear design) の構成を表 21.1 に示します. 表中の〇は基本ソフトウェアの機能で, 〇はオプション機能です.

No.	項目	掲載項	構成
1	寸法	21.3	0
2	精度		0
3	軸受荷重		0
4	組図	21.4	0
5	歯車修整(歯形、歯すじ)	21.6	0
6	歯形レンダリング	21.7	0
7	歯当たり解析	21.8	0
8	伝達誤差解析	21.9	0
9	バックラッシ変化	21.10	0
10	強度計算(鋼) AGMA2003-B97	21.11	0
11	歯面評価	21.12	0
12	FEM 歯形応力解析	21.13	0
13	歯形データ出力	21.14	0
14	測定データ出力(大阪精密機械)	21.15	0
15	測定データ出力(Carl Zeiss)	21.15	0

表 21.1 ソフトウェアの構成

21.3 寸法設定

図 21.2 に寸法設定画面を示します.数値が不明な場合は、標準 値を入力することができ、ねじれ角やオフセット量、工具半径な どを自由に設定することができます.図 21.2 では勾配歯を選択し ていますが、等高歯も設計することができます.

AGMA2005-D03 規格に基づいてハイポイドギヤの各部寸法を 計算します. 図 21.3 および図 21.4 に寸法結果を示します.

∑ 寸法諸元[ANSI/AGMA	2005-D0	3]		- • ×	
項目	記号	単位	Pinion	Gear	
歯たけ傾斜			標準テーバ		
外端正面モジュール	met	mm	2	.50000	
歯 数	n		7	33	
平均歯直角圧力角	Φ	deg	20	.00000	
オフセット量	E	mm	8	.00000	
中央ねじれ角	Ψ	deg	44.58348	31.76884	
ねじれ方向			左ねじれ ~	右ねじれ	
軸角	Σ	deg	90 * 0	0.0 ″	
歯幅	f	mm	14.0763	12.6503	
外端基準円直径	d	mm	20.1894	82.5000	
ビッチ円すい角	γ	deg	10.03217	79.71705	
外端歯先R	ra	mm	0.2500	0.2500	
工具の種類			Mill	ing v	
カッタ刃先R	ro	mm	0.3000	0.3000	
カッタ半径	re	mm	95.250	(3.750) ~	
切り歯数	NS				
歯たけ設定基準			中央歯た	け基準	
中央全歯たけ	hm	mm	3	.65467	
中央有効歯たけ	h	mm	3	.24859	
中央歯末のたけ	aP, aG	mm	2.87414	0.37445	
中央歯元のたけ	bP, bG	mm	0.78053	3.28021	
歯厚設定基準			中央歯直角P	孤歯厚基準	
中央歯直角円弧歯厚	Sn	mm	3.9000 1.700		
円すい角設定基準			中央	基準	
歯先円すい角	α	deg	15.18083	80.97311	
歯底円すい角	δ	deg	8.80482	74.45237	
	確定	2	キャンセル	クリア	

図 21.2 寸法諸元設定

∑ 寸法結果[ANSI/AGMA 2005-D03]						
寸法1 寸法2						
外端項目 🔻	記号	単位	Pinion	Gear		
正面モジュール	mt	mm	2	.5000		
円すい距離	A	mm	57.9486	41.9234		
基準円直径	d	mm	20.1894	82.5000		
歯先円直径	do	mm	27.0904	82.6832		
歯底円直径	dr	mm	18.3553	81.1217		
全歯たけ	ht	mm	4.4396	4.3737		
有効歯たけ	hk	mm	3	.9676		
歯末のたけ	8.0	mm	3.5083	0.5181		
歯元のたけ	bo	mm	0.9313	3.8606		
頂げき	с	mm	0.3523	0.4182		
円ピッチ	ср	mm	7.8540			
正面円弧歯厚	St	mm	6.2326	2.3549		
正面円弧歯厚減少量	ft	mm	0.0956	0.0129		
弦歯厚	tnc	mm	4.4600	2.0226		
キャリパ歯たけ	ac	mm	3.7590	0.5153		
項目	記号	単位	Pinion	Gear		
凹面圧力角	Φ1	deg	15.2665	24.7335		
凸面圧力角	Φ2	deg	24.7335	15.2665		
ビッチ円すい頂点の位置	Z	mm		-2.5071		
歯先円すい頂点の位置	Go, Zo	mm	9.4201	-2.9181		
歯底円すい頂点の位置	GR, ZR	mm	17.9758	-2.5071		
円すい頂点~内端歯先	xi,Xi	mm	26.8603	7.5007		

図 21.3 寸法結果 1

∑ 寸法結果[ANSI/AGMA 200	5-D03]					
寸法1 寸法2						
項目	記号	単位	Pinion	Gear		
基礎円すい角	δb	deg	9 * 25 ' 17.3 "	67 * 36 28.9 "		
歯末角	θa	deg	5 8 55.2 "	1 15 21.8 "		
歯元角	θf	deg	1 * 13 ' 38.5 "	5 15 52.8		
歯元角の和	Σδ	deg	6 * 29	31.3 "		
歯先間の軸方向距離	xb	mm	13.6402	1.9853		
相当90°かさ歯車歯数比	m90	mm	5	.5120		
相当平歯車歯数	ZV	mm	19.6739	300.8301		
円すい頂点〜外端歯先	xo, Xo	mm	40.5005	9.4859		
外端法線バックラッシ	BL	mm	0	.0866		
正面かみ合い率	εa	mm	0.5823			
重なりかみ合い率	εβ	mm	1	. 45 45		
総合かみ合い率	εγ	mm	1	.5667		
ツースアングル	ta	min	210.6740	198.1663		
素材の角度	θ×	deg	88 * 46 '21.5 "	84 * 44 * 7.2 "		
素材の角度	θy	deg	79 * 58 * 4.2 "	10 * 16 '58.6 "		
項目	記号	単位	Pinion	Gear		
凹面圧力角	Φ1	deg	15.2665	24.7335		
凸面圧力角	Φ2	deg	24.7335	15.2665		
ビッチ円すい頂点の位置	Z	mm	2.507			
歯先円すい頂点の位置	Go, Zo	mm	9.4201 -2.9			
歯底円すい頂点の位置	GR, ZR	mm	17.9758	-2.5071		
円すい頂点~内端歯先	xi,Xi	mm	26.8603	7.5007		

図 21.4 寸法結果 2

21.4組み図

図21.3および図21.4の寸法計算結果に基づいたハイポイドギャ 組図を図21.6に示します.

図 21.6 組図

21.5 歯形計算

歯形計算の設定画面を図21.7に示します.歯すじ曲線の種類は, 円弧,インボリュート,エピトロコイド,等リードから選択する ことができます.一般的な歯すじは「円弧」ですが,金型でハイ ポイドギヤを製造する場合,円弧では干渉するため使用できませ んが,「等リード歯すじ」としておけば金型から抜くことができま す.また,本例では,最下段に示す「歯すじ曲線基準」を「ギヤ」 としているためギヤの歯形を基準としてオフセットを与えた場合 のピニオンの歯形を生成します.また,ピニオンの歯幅を内端側, 外端側に歯幅を延長して歯形生成することができますので歯車加 工時には逃げ量を与えておくことができます..

21.6 歯形修整

歯形修整,歯すじ修整をする場合,図2.19~2.23に示すように修 整を与えることができます.図2.21では修整する指定点数(最大= 50)を入力することができ,図2.22のように円弧パターンで入力 することもできます.

歯形1本、歯すじ1本修整の例を図2.23に、歯形断面分割を5、歯 すじ1としたときの修整とトポグラフの例を図2.24に示します.ト ポグラフでは、歯形と歯すじの分割数をそれぞれ最大50まで設定 することができます.

21.7 歯形レンダリング

図21.7で設定した諸元に基づいて歯形を解析し図2.25~2.27の ように表示します.図2.26では、無修整歯形のかみ合い接触線は 内端から外端まで接触線が現れていますが、図2.27では図21.8の歯 面修整を与えていますので両端部での接触は現れていません.

図 2.25 レンダリングとコントロールフォーム

図 2.26 レンダリング (かみ合い接触), 無修整歯形

21.8 歯当たり解析 (オプション)

歯当たり解析諸元の設定を図 21.28 に示します. ここでは、取り付け誤差は無いものとし、接触最大クリアランス(光明丹厚さ) を 3μm として歯当たり解析した結果を図 21.29 に示します.

Σ 歯当たり諸元					
項目	記号	単位	數 値		
水平方向取り付け誤差	⊿H	μm	0.0		
垂直方向取り付け誤差	ΔV	μm	0.0		
軸角取り付け誤差	ΔΣ	deg	0.00000		
オフセット取り付け誤差	⊿E	μm	0.0		
接触最大クリアランス	с	μm	3.0		
回転分割数(1ピッチ当たり)			50		
インボリュート分割数	vui		50		
歯すじ分割数	hul		50		
回転方向					
● BOTH(両歯面) ○ CCW(左歯面) ○ CW(右歯面)					
確定キャンセル 標準値					
図 01 09 歩半	t- 101	初十二日	±		

図 21.28 歯当たり解析諸元

図 21.29 歯当たり

21.9 伝達誤差

図21.8の歯形修整を持つ歯形で無負荷における回転伝達誤差解 析を行った例を以下に示します.ここでは、図 21.30のように取 り付け誤差およびピッチ誤差が無いものとしています.

伝達誤差,ワウ・フラッタ,フーリエ解析の計算結果を図21.31 ~21.33に示します.図21.32のワウ・フラッタではこのグラフ波形を音で確認することができます(グラフ右上の Sound **)**).

21.10 バックラッシ変化

図21.8の歯形修整を持つ歯車のバックラッシの変化を図21.34に 示します.これより、この歯車対のキックアウトは1.0µmであるこ とが解ります.

図21.34 バックラッシ変化

21.11 強度計算

ハイポイドギヤの強度計算は,ANSI/AGMA2003-B97 規格に基づいています.図21.35 に動力諸元設定を示し,強度結果を図21.36~21.42 に示します.

図 21.37	強度結果,	曲げ	(ピニオン凹面)
	0-0-0-01H-114)	- · · /	

▲ 强度指来 [AINSI/AGI	VIA 2003-	pavl		
項目	記号	単位	皼	値
歯数比	mG		4	1.714
周 速	vet	m/s	1	.057
動荷重係数	Кv		1	.094
荷重分配係数	KH 🕫		1	.001
歯 面 曲げ(Pinion	凹) 曲	f(Pinion	凸)寿命	
項目	記号	単位	Pinion	Gear
寸法係数	YX			0.508
歯すじ曲線係数	Yβ			1.000
応力繰り返し係数	YNT		1.018	1.084
幾何係數	YJ		0.245	0.126
曲げ応力	σF	MPa	352.620	759.746
許容曲げ応力	σFP	MPa	386.705	411.745
許容伝達動力(単位)	Payu	k₩	5.685	2.710
許容伝達動力	Pay	k₩	4.928	2.710
曲げ強さの余裕率	SFt		1.137	0.542
				幾何係数 J

図 21.38 強度結果,曲げ (ピニオン凸面)

☑ 強度結果 [ANSI/AGI	MA 2003-	B97]		- • ×
項目	記号	単位	薂	値
歯数比	mG		4	.714
周 速	vet	m/s	1	.057
動荷重係数	Κv		1	.094
荷重分配係数	KHβ		1	.001
歯 面 曲げ(Pinion	凹) 曲	f(Pinion	凸) 寿 命	
項目(歯面強さ)	記号	単位	Pinion	Gear
予想寿命係数	CL		1.921	1.921
予想寿命負荷回数	N	CYCS	1.951E+04	1.951E+04
予想寿命時間	L	hrs	3.251E-01	1.533E+00
項目(曲げ強さ)	記号	単位	Pinion	Gear
予想寿命係数	KL		1.204	1.999
予想寿命負荷回数	N	CYCS	8.739E+05	1.244E+04
予想寿命時間	L	hrs	1.457E+01	9.772E-01

図 21.39 強度結果,寿命

Geometry factor 1 Geometry factor J (Pinion Conc	ave) Geo	metry fact	or J (Pinion Conve	x)
Itea	Symbol	Unit	Pinion	Gear
Geometry factor for Pitting resistance	ZI		0	.184
Mean cone distance	Rm	mm	36	.698
Addendum angle	8 02 1,2	dee	5.143	1.258
Mean addendum	ham1,2	nn	2.938	0.374
Location constant	ĸ		0	.195
Mean transverse diametral pitch	Pm	nn	0	.471
Outer transverse circular pitch	Pe	mm	1	.854
Mean normal base pitch	Pebn	mm	5	.328
Mean normal circular pitch	Pmn	nn	5	.670
Mean transverse pitch radius	rmpt1,2	nn	8.705	196.216
Mean normal pitch radius	rmpn1,2	nn	12.043	271.465
Mean normal base radius	rmbn1,2	mm	11.317	255.034
Mean normal outside radius	rmne1,2	mm	14.381	271.840
Length of mean normal addendum action	ecent.2		5.688	1.089
Length of action in mean normal section	¢00n		6.707	
Transverse contact ratio	8.02		0.962	
Intermediate variable	Kz		0.367	
Face contact ratio	4.5		1	.192
Modified contact ratio	6.0		1	.532
Mean bace spiral angle	βnb	deg	29	.653
Length of action within the contact ellipse	673	nn	0	.090
Mean normal profile radius of curvature at pitch	@m1,2	mm	3.842	88.860
Assumed locations of critical point on tooth for _	yl		-1	.365
	enl	mm	7	.615
Distance along path of action in mean normal se.	eyo.		2.541	
Profile radius of curvature at point fI	A 1.2	nn	6.483	86.320
Relative radius of profile curvature	Pyo	mm	6	.030
Length of the line of contact	60	mm	8	.682
Inertia factor	Zi		1	.316
	¢'nI		7	.640
Load sharing ratio	6 NI		0	.930

図 21.40 幾何係数 (I)

Geometry factor I Geometry factor J (Pinion Conc	ane) Geo	metry fact	or J (Pinion Convex	3
Item	Symbol	Unit	Pinion	Gear
Geometry factor for bending	YJ1,2		0.188	0,148
Mean dedendum	hfm1,2	mm	0.796	3.278
Assumed locations of critical point on tooth for _	уJ		1	283
Length of action within the contact ellipse	677	mm	7	\$72
Determination of point of load application for max	y3		5.045	3.107
Distance from mean section to center of pressure.	60	mm	-0.073	3.032
Sum of gear and pinion mean normal pitch radii	Σrmpn	mm	283	.508
Normal pressure angles at point of load applicati	al12	dee	35.508	19.484
One half of angles subtended by normal circular	¢h1,2	deg	4.758	0.24
Normal pressure angles at point of load applicati	ah1,2	deg	38.750	13.235
Distances from pitch circle to point of load appli.	∆ryo1,2	mm	1.125	-1.285
Tool or cutter tip edge radii used to produce	P ao 1,2	mm	0.300	0.30
Tooth fillet radii in mean section at the tooth root	rmf1,2	mm	0.920	0.333
Tooth strength factor	XN1.2		2.117	2.02
Tooth form factors excluding stress concentra	Y1.2		0.710	0.617
Stress concentration and stress correction factor	Y#1,2		2.213	2.205
Empirical constant used in stress correction for	н		0	.180
Empirical exponent used in stress correction for	L		0.	. 150
Empirical exponent used in stress correction for_	м		0	. 450
Tooth form factors for gear and pinion	YP,YG	mm	0.321	0.280
	€'nJ		7	\$72
Load sharing ratio	εNJ		1.	.000
Inertia factor	Yi		1.	.986
Projected length of instantaneous line of contact	ex	mm	7	.602
Toe increments of face width (effective)	db'i1,2	mm	3.722	6.535
Toe increments of face width	dbi12	mm	3.722	5.838
Heal increments of face width (effective)	4b'e1,2	mm	3.894	-0.587
Heal increments of face width	abe1,2	mm	3.894	0.000
Effective face width	b'12	mm	11.274	3.545

図 21.41 幾何係数 (J), (Concave)

eometry factor I Geometry factor J (Pinion Conc	vave) Geo	metry facts	or J (Pinion Convex)
Ites	Symbol	Unit	Pinion	Gear
Geometry factor for bending	YJ1,2		0.245	0.126
Mean dedendum	hfm1,2	nn	0.796	8.278
Assumed locations of critical point on tooth for _	уJ		1.	.283
Length of action within the contact ellipse	£ ??	mm	7.	.872
Determination of point of load application for max	y3		3.107	5.045
Distance from mean section to center of pressure	e0"	mm	3.032	-0.073
Sum of gear and pinion mean normal pitch radii	Σrmpn	mm	283.	508
Normal pressure angle at point of load applicatio	aL1.2	deg	28.468	19.870
One half of angles subtended by normal circular	šh1,2	deg	7.531	0.196
Normal pressure angle at point of load application	ah1,2	deg	20.837	18.674
Distances from pitch circle to point of load appli	⊿ryo1,2	mm	0.074	-0.557
Tool or cutter tip edge radii used to produce	P ao 1.2	mm	0.300	0.000
Tooth fillet radii in mean section at the tooth root	rmf1,2	mm	0.320	0.332
Tooth strength factor	XN1,2		4.390	1.438
Tooth form factors excluding stress concentra	¥1.2		1.592	0.421
Stress concentration and stress correction factor	Y#1,2		2.976	1.923
Empirical constant used in stress correction for-	н		0.	. 180
Empirical exponent used in stress correction for	L		0.	150
Empirical exponent used in stress correction for	M		0.	450
Tooth form factors for gear and pinion	YP,YG	mm	0.535	0.218
	e'n J		7.	.872
Load sharing ratio	εNI		1.	.000
Inertia factor	Yi		1.	306
Projected length of instantaneous line of contact	eK.	mm	7.	602
Toe increments of face width (effective)	db'i1,2	nm	7.374	2.004
Toe increments of face width	dbi12	mm	7.374	2.884
Heal increments of face width (effective)	4b'e1,2	mm	0.242	3.055
Heal increments of face width	dbe1,2	mm	0.242	3,055
Effective face width	b'1.2	mm	9.044	11.267

図 21.42 幾何係数 (J), (Convex)

21.12 歯面評価

強度計算終了後,図 21.43 の歯面評価グラフ設定画面で歯形修 整の有無,駆動歯車の種類,計算ポイント数を入力するとすべり 率グラフ(図 21.44)とヘルツ応力グラフ(図 21.45)を表示しま す.

-	-

∑ 歯面評価グラフ諸元				
項目	記号	単位	Pinion	Gear
歯車の温度	GTc	°C	70.000	
油の温度	To	°C	40.000	
油の種類			鉱物油 ~	
ISOグレード			ISO VG 320 \sim	
動粘度(40°C)		mm²/s	320	
平均温度	Mtc	°C	252.000	
標準偏差温度	SD	°C	41.000	
絶対粘度	μο	cP	53.48	
粘度圧	α	mm²/N	0.02156	
なじみ歯面粗さ(Ra)	σ1, σ2	μm	0.400	0.400
摩擦係数の方式			一定値 ~	
摩擦係数	μm		0.0600	
歯形修整			有り ~	
駆動歯車			Pinion 🗸	
計算ポイント数			100	
確定 キャンセル 標準値				

図 21.43 歯面評価グラフ設定

図 21.44 すべり率グラフ

図 21.45 ヘルツ応力グラフ

21.13 FEM 歯形応力解析

図 21.46 の FEM 解析の設定画面で縦弾性係数,ポアソン比,分 割数および荷重位置そして荷重を入力することにより5 種類の応 力(σ_x , σ_y , せん断応力 τ , 主応力 σ_1 , σ_n , σ_m および変位)を計算し ます. 歯車強度計算と共に歯に作用する実応力を評価する事がで きますので歯車強度の信頼性を高めることができます. 図 21.47 および図 21.48 にピニオンとギヤの最大主応力 σ_1 の例を示します.

図 21.46 FEM 解析の設定

図 21.47 FEM 解析結果, ピニオン o1

図 21.48 FEM 解析結果,ギヤの

21.14 歯形データ出力

歯形・歯すじ修整を与えた歯形(無修整歯形を含む)をCADデ ータで出力することができます.図21.49で歯形ファイル条件を設 定し,図21.50で歯形の分割数を変更することができます.

歯形は、図21.51のように3D-IGESファイルを出力することができ、かみ合い歯形の3D-IGES(図21.52)や、組図の2D-DXFファイル(図21.53)を出力することができます。

図 21.49 歯形ファイルの設定

図 21.53 CAD 作図例, 組図 (DXF)

21.15 歯形測定データ出力(オプション)

Carl Zeiss 三次元測定機と大阪精密機械測定機の2種類の測定デ ータ出力機能があります.以下に、三次元測定機(Carl Zeiss)用 測定データ出力例を示します. 図 21.54 の測定データの設定画面 で歯形測定分割数と歯面の測定逃げ量および測定基準距離を設定 することにより測定点座標と法線ベクトルをファイルを図 21.55 のように出力します.

■ ハイボイドギヤ別定データ.Txt - メモ紙 ファイル(E) 編集(E) 巻式(Q) 表示(M) ヘルブ(E) * NUMBER OF TEETH * 7 1 SPIRAL DIRECTION (LEFT=1/RIGHT=2/STRAIGHT=3) X HASP CDIDAL ANGLE X BIM 44 6036 NORMAL MODUL X MN ! 2.12282 HEEL DIAWETER X DA 27.09038 PITCH DIAMETER X D ! 17.73730 FACE WIDTH * MOUNTING DISTANCE X TB ! 71.00000 DIFFERENCE OF MOUNTING DISTANCE X DTB 0.00000 PITCH CONE ANGLE X DEA 10.0322 TIP CONE ANGLE X DEAK 15.1808 8.8048 POOT CONE ANOLE W DEAF NUMBER OF TEETH TO BE MEASURE X ZM ! NOMINAL DATA sigma hypoid * FLANK !] DRAWING-NO. : PART-NO. : Tooth Thickness & Dedi ! 0.0000 [DEG] a : NO. NO. OF TEETH % Z ! 7 % (J,I) ! (5, 3) NO. OF COLUMNS X NSPG ! 9 ; NO. OF LINES X NZLG ! DATE : 04.09.2021 TIWE : 13:03:57 C I XP YP ZP NX NY XP 3.734090 -6. 4.540741 -6. 5.411693 -6. 6.301645 -6. 5.342416 -5. 6.279557 -5.
 ZP
 NX
 NY

 -43.521693
 0.234393
 0.73578
 0.73578

 -43.339904
 0.07555
 0.78557
 0.78657

 -43.34904
 0.07555
 0.40045
 0.70378

 -43.35904
 0.16877
 0.70394
 0

 -43.135696
 0.16877
 0.70394
 0

 -43.135696
 0.16877
 0.70394
 0

 -45.198177
 0.01292
 0.74330
 0

 -45.198177
 0.05129
 0.800112
 0
-6.220115 -6.592900 -6.776325 -6.807968 0.6346 0.6128 0.596 0.5846 -6.713100 -5.290893 -5.460284

図21.55 測定データ (ピニオン)の例 (Carl Zeiss)

21.16 その他機能

- (1) 軸受け荷重および歯車精度表(説明は省略します).
- (2) 設計データの保存, 読み込み
- (3) 印刷(寸法,強度計算,組図)
- (4) HELP 機能

操作方法を知りたい場合は[HELP]機能を使うことができます. 例えば、歯当たりを表示しているとき、この画面をアクティブに して[F1]キーを押すことで図 21.56 を表示します.また,画面上部 の[ヘルプ] (図 21.57) で操作説明を表示します. また, ソフトウ ェアに変更があった場合にはクラウドに置いたソフトウェアを 「最新版ダウンロード」からダウンロードすることができます.

図 21.57 ヘルプ