[1] involute Σ iii(spur and helical gear design system)

 \boxtimes 1.1 involute Σ iii(spur and helical)

1.1 概要

involute Σ iii (spur and helical)は、円筒歯車の寸法,強度(鋼,樹脂)、軸荷重、歯面修整、伝達誤差、歯面評価、FEM 解析、歯形 データ等の機能を備えており、効率よく的確に設計することがで きます.

本ソフトウェアは, involute Σ (spur and helical)[Software No.1]を バージョンアップしたソフトウェアです. 今までオプション扱い していた機能も一部,基本ソフトウェアに含めました. 図 1.1 に 全体画面を示します.

1.2 ソフトウェアの構成

involute ∑ iii の構成を表 1.1 に示します.表中の○は,基本ソフトウェアに含まれ,◎はオプションです.

適応歯車:インボリュート平,はすば歯車(外歯車,内歯車)

表 1.1 ソフトウェアの構成

No.	項目	掲載項	構成
1	基準ラックの設定	1.3	0
2	寸法	1.4	0
3	推論	1.5	0
4	歯形創成図	1.6	0
5	かみ合い図	1.6	0
6	かみ合い回転機能	1.6	0
7	歯形レンダリング図	1.7	0
8	歯車精度	1.8	0
9	歯車強度計算(鋼)	1.9	0
10	歯車強度計算(樹脂)	1.10	0
11	金属×樹脂歯車強度	1.10	0
12	軸受け荷重	1.11	0
13	すべり率, ヘルツ応力	1.12	0
14	歯形出力(DXF, IGES)	1.17	0
15	HELP 機能	1.19	\bigcirc
16	設計データ管理	1.20	0
17	FEM 歯形応力解析	1.13	0
18	回転伝達誤差(フーリエ解析, ワウ・フラッタ, CSV 出力)	1.16	0
19	歯面評価(歯面接触温度,油膜 厚さ,すべり速度線図, PV 値)	1.12	0
20	歯面修整(歯形,歯すじ,バイアス)	1.14	0
21	歯当たり	1.15	\bigcirc
22	ISO6336	1.21	0

1.3 プロパティ(基準ラック,精度,強度)

図 1.2~1.5 に設定画面を示します.

- ・歯車の組み合わせ : 外歯車×外歯車, 外歯車×内歯車
- ・基準ラック : 並歯, 低歯, 特殊
- ・歯先円決定の方式 :標準方式,等クリアランス方式
- ・鋼歯車の強度計算規格は、図 1.5 に示すように
 - JGMA 401-02:1974, 402-02:1975
 - · JGMA 6101-02:2007, 6102-02:2009
 - ISO 6336:2006

の3 種類があり、プラスチック歯車の強度計算規格は、JIS B 1759(2013)にも対応しています.

1.4 寸法

歯車寸法は、各部寸法、かみ合い率、すべり率などを計算しま す.アンダーカットが発生している歯車のかみ合い率は、TIF (True Involute Form) 径を基準にかみ合い率を決定します.また、歯先 に丸みがある場合はRを考慮したかみ合い率を算出します.

(1)中心距離と転位係数の関係は、以下の3種類です. <1>転位係数をピニオンとギヤに与え中心距離を決定 <2>中心距離を基準として各歯車の転位係数を決定

- <2>中心距離を基準として谷歯車の転位係数を伏く
- (2)転位係数の設定方式は、以下の4種類です.

<1>転位係数の設定力式は、数十の44種類

- <2>またぎ歯厚を入力して転位係数を決定
- <3>オーバーピン寸法を入力して転位係数を決定
- <4>円弧歯厚を入力して転位係数を決定

図 1.6 に諸元設定画面を示します.また,転位係数入力時は,

転位係数を直接入力する方法以外に、歯厚から転位係数を決定することもできます.図1.7に寸法結果画面を示します.

項目	記号	単位	Pinion	Gear			
モジュール	mn	mm	3.	.00000			
歯 数	z		22	33			
圧力角	αn	deg	20.	.00000 *			
ねじれ角	β	deg	30 * 0 '	0.00 ″ 📃			
ねじれ方向			(右ねじれ 👻)	左ねじれ			
基準円直径	d	mm	76.21024	114.31535			
基礎円直径	db	mm	70.25753	105.38630			
歯厚入力方式			転位係数 ▼	転位係数 ▼			
転位係数	xn		転位係数	0.12300			
またぎ歯数	ZM		ボール寸法	6			
またぎ歯厚	W	mm	円弧歯厚	51.04770			
測定ボール径	dp	mm	5.0000	5.0000			
オーバーボール寸法	dm	mm	83.32747	121.47045			
歯直角円弧歯厚	Sn	mm	4.93077	4.98100			
中心距離	a	mm	95.91924				
歯直角法線歯厚減少量	fn	mm	0.05000	0.06000			
歯幅	Ь	mm	23.00000	23.00000			
歯先円直径	da	mm	82.81024	121.05335			
歯底円直径	df	mm	69.31024	107.55335			
歯先R	ra	mm	0.10000	0.10000			
基準ラック歯元R	rf	mm	1.1250 📃	1.1250 📃			
	確認	e (キャンセル	<i>クリア</i>			

図 1.6 諸元設定

└── 寸法結果				- • •		
項目	記号	単位	Pinion	Gear		
正面モジュール	mt	mm	3.46410			
正面圧力角	αt	deg	22.79588			
有効歯幅	bw	mm	23	.00000		
リード	PZ	mm	414.69023	622.03535		
転位量	Xm	mm	0.30000	0.36900		
歯末のたけ	ha	mm	3.30000	3.36900		
歯元のたけ	hf	mm	3.45000	3.38100		
全歯たけ	h	mm	6.75000	6.75000		
クリアランス	С	mm	0.73745	0.73745		
基礎円筒ねじれ角	βb	deg	28 * 1	27.55 "		
正面かみ合い圧力角	aw	deg	23 * 42	, 41.41 "		
かみ合いビッチ円直径	dw	mm	76.73539	115.10309		
正面法線ビッチ	pbt	mm	10.03275			
歯直角法線ビッチ	pbn	mm	8.85639			
かみ合い長さ	ga.	mm	12.93304			
正面かみ合い率	εα		1.28908			
重なりかみ合い率	εβ		1.22019			
全かみ合い率	εγ		2	.50927		
すべり率(歯先)	σa		0.48858	0.55044		
すべり率(歯元)	σb		-1.22439	-0.95535		
設計またぎ歯厚	W	mm	32.542672	50.987699		
設計オーバーボール寸法	dm	mm	83.198909	121.311318		
設計歯直角円弧歯厚	sn	mm	4.877562	4.917148		
正面円弧歯厚	st	mm	5.693564	5.751562		
正面またぎ歯厚	₩a	mm	36.865179	57.760182		
キャリバ歯たけ	hj	mm	3.35981	3.40969		
キャリバ歯厚	Sj	mm	4.87578	4.91634		
基準ラック歯末のたけ係数	hac		1.00000	1.00000		
基準ラック歯元のたけ係数	hfc		1.25000	1.25000		
バックラッシ	jt	mm	0	.13610		
法線方向バックラッシ	jn	mm	0	.10792		

図 1.7 寸法結果

1.5 推論

推論1は、図1.8のように曲げ強さを基準としてモジュールと 歯幅を決定します. ここで推論したモジュールと歯幅を有効にし て次の設計に進むこともできます. 強度を満足するモジュール, 歯幅、材料の組み合わせは何通りもありますので、推論結果を基 本として歯車の概略を決定する際には非常に有効な機能です.

推論2は、すべり率とかみ合い率を基準として最適な転位係数 を決定するための機能です. 図 1.9 に示すグラフは、 ピニオンの 最大すべり率を赤線で、ギヤの最大すべり率を青線で、正面かみ 合い率を緑線で示しています.図 1.9 の場合、すべり率とかみ合 い率から判断してピニオンの転位係数 0.3 が、歯形にとって最適 な値ということができます. 転位係数の決定理由は、アンダーカ ット防止や中心距離の変更、かみ合い圧力角の調整などが一般的 ですが、この推論機能により、すべり率とかみ合い率の関係を基 本とした転位係数を決定することができます. アンダーカットが 発生している歯形では、すべり率の値が大きくなります.

図 1.8 推論1(曲げ強さ)

1.6 歯形図

かみ合い図を図 1.10 に示します. 補助フォームに示すようにズ ーム,距離計測(図1.11),R計測(図1.12)機能および直径,修 整歯形,作用線, 歯先幅, 奇数歯 Y 測定値の表示そして回転機能 があります. 歯形創成を図 1.13 に示します.

1.7 歯形レンダリング

3次元歯形のかみ合いを図1.14のように作図することができ、 かみ合い部分に接触線を観察することができます. コントロール フォームにより歯形の向きを自由に変えることができ、拡大、縮 小が可能です.

歯形レンダリング 図 1.14

1.8 歯車精度

図 1.15 と図 1.16 に新 JIS の歯車精度規格 JIS B 1702-1:1998 と JIS B 1702-2:1998 による誤差の許容値を示します.また、図 1.4 の設定 により新 JIS と旧 JIS の切り換えが可能です。歯車精度規格は

· JIS B 1702-1:1998, JIS B 1702-2:1998, JIS B 1702-3:2008

- JIS B 1702:1976
- · JGMA 116-02:1983

の5種類です.

元 JIS B 1702-1 JIS	B 1702-	2					
項目(JIS B 1702-1)	記号	単位	Pinion	Gear			
単一ビッチ誤差	fpt	μn	6	6			
部分累積ビッチ誤差	Fpk	μn	9.5	11			
累積ビッチ誤差	Fp	μn	19	19			
全歯形誤差	Fα	μn	8	8			
全歯すじ誤差	Fβ	μn	8.5	8.5	▼ 精度		
片歯面に。「かみ合い観差	f'i	μn	9.5	9.5	- 1906	1	
片歯面全かみ合い誤差	F'i	μn	29	29	諸元 JIS B 1702-1 JIS B 1702-2		
歯形形状誤差	ffα	μn	6	6	項目(JIS B 1702-2) 記号 4	斜位 Pinion	Gear
歯形こう配誤差	fHa	μn	5	5	両歯面全かみ合い誤差 Fi'	µm 25	25
歯すじ形状誤差	ffβ	μn	6	6	両歯面に、がかみ合い観差 fi*	µm 10	10
歯すじ傾斜誤差	fΗβ	μn	6	6	歯清の振れの許容値 Fr	µm 15	15

図 1.15 JIS B 1702-1

図 1.16 JIS B 1702-2

1.9 歯車強度計算(鋼)

歯車強度計算は、図 1.5 に示すように ISO6336:2006 規格に準拠 した JGMA6101-02:2007 および JGMA 6102-02:2009 規格と JGMA401-01:1974, 402-01:1975の2種類あり、設計単位は、SI単位 系, MKS 単位系を選択することができます. 図 1.17 に強度計算 の動力設定画面を示します. 材料の選択は、図 1.18 に示すように 「材料」と「熱処理」に適応した材料の選択フォームを表示しま す. また,図 1.19 に曲げに関する係数設定画面を,図 1.20 に面圧 に関する係数の設定画面を示し、図 1.21 に強度計算結果を示しま す.

🔀 強度計算[JGMA6101-02, JGMA6102-02]									
動力JGAM6101-6102 材料JGMA6101-6102 曲げ JGMA6101-02 歯面 JGMA6102-02									
トルク入力方式 トルク,回転速度入力基準									
● トルク→動力 ○ 動力→トルク ● Pinion ○ Gear									
項目	記号	単位	Pinion	Gear					
伝達動力	Р	k ₩	3.8764						
呼びトルク	T	N·m 👻	30.0000 🔜	45.0000 -					
回転速度	n	min-1	1234.0000	822.6667					
負荷かみ合い回数	NL		10000000 👻						
呼び接線力	Ft	N	787.	.2958					
周 速	٧	m/s	4.	.9237					
相当平歯車歯数	Z٧		33.8712	50.8068					
歯車精度JIS B 1702-1			N5 👻	N5 🔻					
正面かみ合い率	εα		1.	.2891					
重なりかみ合い率	εβ		1.	.2202					
	· · · · · · · · · · · · · · · · · · ·								

図 1.17 強度計算(動力設定)

強度計算(曲げに関する係数) 図 1.19

		and and	y control or					
項目	記号	単位	Pinion	liear				
有効菌幅	БН	nn	23.000					
領域係数	ZH		2.175					
最悪荷重点係数	Zc		1.000	1.000				
材料定数係数	ZE	√MPa	189.800					
かみ合い率係数	Zε		0.763					
ねじれ角係数	Zβ		1.000			-		_
潤滑油係数	ZL		1.000			彩的体数量	R(Pinion)	
撒骨速度係数	Zv		0.974			H 58	料料が全体硬に異、球状素俗得研及び	#91018.67
歯面粗さ係数	ZR		1.000		* ##A	が不の表面時に胸でのって、設成の ビッチングを許容する場合。	1.29	
寸法係数	Zx		1.000	1.000		○ 曲線8	自律者において、ビッチングを全く許容 しない場合。	1.12
硬さ比係数	Zw		1.000	1.000		0.00100	全体硬化酶をガス窒化した場合,窒化酮 をガス窒化した場合,ねずみ構造の場合。	1.00
寿命係数	ZN		1.293 🛄	1.293		① 曲線0	全体現化調を塩浴室化した場合。	1.00
使用係数	KA		1.000				日本 利用 キャンセル	7
動荷重係数	Kv		1.322					
動荷重係数	K'v		1.044					
歯すじ荷重分布係数	KHβ		1.200			使すじびき	6分布成数的167番约	-
歯すじ荷重分布係数	K'HØ		1.200			a 70103		
正面荷重分布係数	KHα		1.000	1		軽度の片	当り (Base/No=1.2程度)	1.2
正面荷重分布係数	K'Hα		1.000			中程度の	片当り(Neas/No=1.5程度) 当り (Neas/No=2.0程度)	1.5
材料安全率	SHmin		1.000			種種な片	当り (Names/No+2.01;(上)	2.013LE
			a A bat	- Inter	_	10.3.1	こ方同の平均同重、finas=載大何重	

磁度結果[JGMA6101-02,JGM	MA6102-	02]		- • 🗙
項目(JGMA6101-02曲げ)	記号	単位	Pinion	Gear
歯元曲げ応力	σF	MPa	32.632	32.146
許容歯元曲げ応力	σFP	MPa	522.994	407.431
総合安全率	SF		16.027	12.674
許容接線力	Ftlim	N	15978.161	12635.429
項 目(JGMA6102-02 歯面)	記号	単位	Pinion	Gear
而圧応力	σH	MPa	343.249	343.249

N 図 1.21 強度結果

1612,009

21987.990

4 696

1347.539

15365.021

αHP MPa

Fclim

1.10 歯車強度計算(樹脂)

許容接触応力

総合安全率

許容接線力

プラスチック歯車の強度は、図 1.5 で JIS B 1759(2013)または Lewis の式を選択することができます. JIS B 1759「プラスチック 円筒歯車の曲げ強さ評価方法」は、歯車の運転試験に基づいて歯 車の許容曲げ応力を求める方法が規定されていて POM の許容曲 げ応力は各所の実験結果から 80.0[MPa]と定まり、POM 以外の材 料についても規格に基づいて独自に決定することができます. そ して歯元曲げ応力と各種係数(歯元形状係数、寿命係数、雰囲気 温度係数等)を考慮した許容歯元曲げ応力とを比較して安全か否 かを判断します. 詳しくは規格をご覧ください.

プラスチック歯車の強度計算の例として図 1.22 に歯車諸元を, 図 1.23 に強度諸元を,図 1.24 に曲げ応力に関する値を図 1.25 に 相当平歯車の値を図 1.26 に係数と安全率 SF を示します.

Z 寸法諸元 回 XX							
項目	記号	単位	Pinion	Gear			
モジュール	mn	mn	1.00000				
曲数	z		16	30			
圧力角	αn	deg	20.	.00000 *			
ねじれ角	β	deg	20 * 0 '	0.00 ″ 🛄			
ねじれ方向			(右ねじれ 👻)	左ねじれ			
基準円直径	d	mm	17.02684	31.92533			
基礎円直径	db	m	15.87745	29.77022			
歯厚入力方式			【 転位係数 ▼】	転位係数 ▼			
転位係数	xn		0.20000	0.00000			
またぎ歯数	ZM		3	4			
またぎ歯厚	W	m	7.78466	10.83407			
測定ボール径	dp	m	2.0000	2.0000			
オーバーボール寸法	dm	m	20.58245	35.28587			
歯直角円弧歯厚	Sn	m	1.71638	1.57080			
中心距離	a	m	24.	90000			
歯直角法線歯厚減少量	fn	mn	0.00000	0.00000			
歯幅	b	mn	10.00000	10.00000			
歯先円直径	da	m	19.42684	33.92533			
歯底円直径	df	mm	14.92684	29.42533			
歯先R	ra	mm	0.10000	0.10000			
基準ラック歯元R	rf	mm	0.3750 🔜	0.3750 🔝			
	確況	Ê	キャンセル	<i>b</i> y <i>p</i>			

図 1.22 歯車諸元

図 1.23 強度諸元

迄 プラスチック円筒歯車の曲げ強さ評価結果 JIS B 1759:2013 🛛 📼 💌									
「歯元曲げ」相当平歯車 係 数									
項 目(歯元曲げ)	記号	単位	Pinion	Gear					
歯元曲げ応力	σF	MPa	26.904	23.843					
歯形係数	YF		1.976	1.999					
基準ラック歯元すみ肉半径	E	m	0.068	0.068					
補助係数(歯元危険断面歯	G		-0.675	-0.875					
補助角度(歯元危険断面歯	н	rad	-0.889	-0.963					
ラック工具(ビニオンカッ	θ	rad	0.814	0.901					
歯元危険断面歯厚	SFn	m	2.043	2.106					
曲げモーメントの腕の長さ	hFe	m	1.407	1.473					
歯元すみ肉丸み半径	ρF	m	0.504	0.534					
基礎円筒ねじれ角	βb	deg	18.74724						

図 1.24 歯元曲げ 筒歯車の曲げ強さ評価結果 JIS B 1759:2013 プラスチック - • 💌 歯元曲げ 相当平歯単 係 数 項目(相当平歩事) 파문 単位 35.6029 齿 勒 18,9882 2n 8 can dh Pbn dbn 1.2844 18,9882 35,6029 nn nn nn 2 9521 17 8431 33 4558 基礎円直径 17.8431 21.3882 20.5103 29.54644 33.4558 37.6029 36.8667 24.84059 歯先円直径 外側の点を通る円の直径(... 外側の点の圧力角(一歯か... dan nn den nn αen des

外側の点の角度(一歯かみ...

外側の点の作用角(一歯か...

曲げ強さに対する安全係数

安全判定

図 1.25 相当平歯車 プラスチック円筒歯車の曲げ強さ評価結果 JIS B 1759:2013 • × 歯元曲げ 相当平歯車 係 項目(係数) 応力修正係数 危険断面歯厚と曲げモーメ... 危険断面歯厚と曲元すみ... 記문 単位 inion 1.789 ear 1.763 1.430 1 452 2.027 1.971 qs γβ 0.833 ねじれ角係数 1.128 1.128 リム厚さ係数 YB バックアップレシオ 許容歯元曲げ応力 BR 0.889 0.889 σFP SF MPa. 46.935 50.335

des des

γe αFen

3.10176 26.44468

1.745

SF>SFmin

係数

1.69879 23.14180

2,111

SF>SFmin

1.11 軸受け荷重

歯車に作用する荷重と、軸受けに作用する荷重を計算します. 荷重の種類は、接線力、法線力など各軸受けに作用する荷重 20 種類を計算します.図1.27に計算結果を示します.

図 1.26

図 1.27 軸受荷重

1.12 歯面評価 1)

歯面評価では、すべり率、ヘルツ応力、油膜厚さ、接触温度、 すべり速度, すべり速度図 (PV 値) を表示します. これらの計 算結果は、歯面修整には適応していません. また油膜厚さ、接触 温度(歯車温度+フラッシュ温度)は、AGMA2001-C95, Annex A に よる計算結果です. そのため歯面修整量や荷重分担などを考慮し た厳密な解析は[45]CT-FEM Opera iiiをお使いください.

図 1.28 の油の種類は、鉱物油、合成油を選択でき ISO グレード も選択(任意設定可)することができます。また、摩擦係数は、 一定値, ISO, AGMA 方式の中から選択することができます.

図 1.29~1.34 に、すべり率、ヘルツ応力グラフ等を示しますが、 横目盛はロールアングルと作用線長さの切り換えができます. 図 1.31 の油膜厚さから摩耗の発生確率を,図 1.32 の接触温度から スカッフィングの発生確率を計算します.

^{*1)} すべり率とヘルツ応力は標準機能で、他はオプションです.

1.12a すべり率とヘルツ応力グラフ

インボリュート歯形の特徴としてかみ合いピッチ円ではころ がり運動となりますが、これ以外ではすべりを伴う運動となりま す. 例題歯車 (m_n=2, z₁=15, z₂=24, a=20°の標準平歯車)のすべり 率とヘルツ応力、歯面接触温度(歯車温度+フラッシュ温度)お よび油膜厚さグラフは、図 1.35(左列)となり、ピニオンの歯元 のすべり率が大きいため、かみ合い始めに急激なヘルツ応力変化 を示しています. このような場合、精度を良くしても問題解決に はなりません.かみ合い率だけでなく、すべり率およびヘルツ応 力の変化を考慮して設計する必要があります. ヘルツ応力の変化 を滑らかにするには、転位を調整するだけで簡単に解決する場合 があります.また、樹脂歯車は、すべりによる熱の影響が大きい ため十分注意して設計する必要があります.

中心距離を変化させないで、転位係数を $x_{n1}=0.24$, $x_{n2}=0.24$ として歯形修整(スムースメッシング)を施した場合のすべり率とヘルツ応力そして歯面接触温度の変化を、図 1.36に示します.この結果、図 1.35(c)のスカッフィング発生確率 90%から図 1.36(c)では68%に低下し、摩耗の発生確率も 30%から 26%に低下していることが解ります.

1.12b O級歯車

歯車歯形のインボリュート面は重要ですが、これと同様に歯元 形状も重要です.図1.37のグラフは、歯元曲線を任意Rで接続し た歯形の試験結果(両歯面かみ合い)であり、図1.38のグラフは、 理論トロコイド曲線歯形の試験結果を示しています.創成運動を 基本に考えますと歯元の形状は①**圧力角、②基準ラック歯元のた** け、③**基準ラック歯元R**、④転位量、⑤歯数によって決定される 準トロコイド曲線となります.involuteΣiii(spur and helical)は、理 論歯形曲線を出力します.また、歯元形状に対する応力の影響は 付録[D]をご覧ください.

1.13 FEM 歯形応力解析

強度計算終了後、[FEM]アイコンをクリックするだけで簡単に 応力解析を行うことができます.図 1.39 に、FEM 解析の設定画 面を示します.縦弾性係数、ポアソン比、分割数および荷重点位 置そして荷重(変更可能)を与えることで応力を解析(σ_x . σ_y ,せ ん断応力τ、主応力 σ_l , σ_2)します.歯車強度計算と歯に作用する 実応力を評価する事により歯車強度の信頼性を高めることができ ます.図 1.40 にピニオンの最大主応力 σ_l の応力分布図を示します. また、歯形の変位(色分布表示も可能)と歯形修整量を図 1.41 に 示します.

歯形修整は、歯車の運転性能を上げるための有用な方法であり 精度の良い歯車であってもかみ合い時の歯のたわみにより駆動歯 車と被動歯車の歯に法線ピッチの差が発生します.この法線ピッ チの差によるかみ合いのずれが、[振動]や、[音]の原因となりま す.歯形修整はこれを解決する一つの方法です.弾性率が小さい 樹脂材料は変位も大きくなりますので歯形修整の効果は大きいと いえます.図1.41のように2D-FEMにより歯のたわみから歯先修 整を決定する際の歯のたわみ量を知ることができますが、3次元 歯面修整の決定は[45]CT-FEM Opera iiiをお使いください.

図 1.39 FEM 設定 (2D)

図 1.42 に 3D-FEM 解析条件設定画面を示します. 図 1.43 にピ ニオンとギヤの応力分布図を,図 1.44 にピニオンとギヤの変位図 を示します.また,図 1.43 および図 1.44 の画面上部のスクロール バーで縦回転,横回転機能で観察角度を変えることができ,ズー ム機能で図の拡大,縮小ができます.

本ソフトウェアでは1歯に荷重が作用したときの歯の応力およ び変位を計算しますが、同時かみ合い歯に負荷が作用したときの 応力、歯の変位、軸角誤差、歯形誤差、ピッチ誤差そして歯面修 整などに対応した解析をしたい場合は[45]CT-FEM Opera iiiを お使いください.

(a)ピニオン

図 1.44 歯の変位

(b)ギヤ

1.14 歯車修整(歯形,歯すじ,バイアス修整)

図1.45 に歯面修整を与えた例を示します. この歯形を得るため には図1.46 の歯形修整を数値入力で与えることもできますが,右 側の図のようにパターン化した歯形に数値を入力して与えること もできます. 同様に,歯すじ修整も図1.47 のように設定すること ができます. この歯形修整と歯すじ修整の2つを図1.48 のように 表し,反対歯面にコピーすれば左右歯面同じ修整歯形となり,そ れを合成すると図1.45 として表示することができます.

また、図 1.48 の画面上部のコンボボックスで「歯形」,「歯すじ」, 「歯形・歯すじ」を選択することができ、歯形たけ方向は作用線 または直径で指定することができます.また、歯形修整の倍率は 最大 1000 倍で設定することができます.

図 1.45 歯面修整(トポグラフ)

図 1.48 歯形修整&歯すじ修整とトポグラフ

歯面修整を与えた歯形は、図1.49の歯形計算諸元で設定するこ とができます.ここで設定した歯形計算条件は、図1.10~1.14に 示す歯形に有効で、図1.14の歯形レンダリングに重ね合わせるこ とができるため図1.50のように表示することができます.ここで は、ピニオンに歯面修整を与えているため図中の赤色歯面の中に 黄色歯面が表れています(ギヤは無修整).

1.15 歯当たり

歯面修整(図1.45)を与えた歯車に図1.51で歯当たり条件を設定し歯当たりを確認することができます.ここでは、平行度誤差および食い違い誤差を0とし、接触最大クリアランスを2.0µmとしたときの歯当たりを図1.52および図1.53に示します.

図 1.53 歯当たり (ギヤ) & 拡大

1.16 伝達誤差解析

伝達誤差解析では、無修整歯形または図1.45 で与えた歯形で無 負荷時の回転伝達誤差試験をすることができます。図1.54 に伝達 誤差設定を示しますが、ここでは2D 解析または3D 解析の選択を することができ、軸の振れ、回転速度を設定することができます. また、ピッチ誤差は図1.55 のように最大値の設定または全歯のピ

ッチ誤差を設定することができます.

伝達誤差解析, ワウ・フラッタ, フーリエ解析結果は, 図 1.56 ~1.58の左下にある CSV File で図 1.59 のように csv ファイ ル (本例の場合 361 個のデータ) に出力することができます.

本ソフトウェアは無負荷での伝達誤差解析試験です. 負荷や軸 角誤差に対応した伝達誤差解析は[45]CT-FEM Operaiiiをお使い ください.

1.17 歯形出力

生成した歯形は、図 1.60 の歯形ファイル形式 で出力すること ができます. 3D-IGES の場合、歯形を一体型と分割型を選択する ことができ、分割型の場合は歯元フィレット部、インボリュート 歯面、歯先 R、歯先部に分割して図 1.61 のように出力します.

図 1.62 に示す座標補正設定では、金型用に使用することを考慮 し、モジュール収縮率や圧力角補正、ねじれ角補正そして放電ギ ャップを考慮した歯形を出力することができます。例として図 1.63 にモジュール収縮率 20/1000 を考慮した歯形図(2D)を示しま す.また、歯形座標値を図 1.64 のようにテキストファイルで出力 することができます。

AMTEC www.amtecinc.co.jp

📄 txtt-2D.txt - メモ帳	
ファイル(E) 編集(E) 書式(Q) 表示(Y) ヘルプ(H)	
-4.70752968 41.13651023	*
-4./0/19168 41.1365310/ -4.70695961 41.19655077	
-4.70651547 41.13656933	
-4.70617727 41.13658674	
-4./0583901 41.13660301 -4.70550069 41.13661813	
-4.70516232 41.1366321	
-4.7048239 41.13664493	
-4.70448043 41.13000002 -4.70414693 41.13666716	
-4.70380839 41.13667655	
-4.70346981 41.1366848	
-4.70279258 41.13669786	
-4.70245393 41.13670267	-
 Image: A set of the set of the	► at

図 1.64 テキストファイル(.txt)

1.18 内歯車

内歯車は図 1.3 で「外歯車×内歯車」を選択することで外歯車 と同様に計算することができます. 図 1.65 に歯車諸元を図 1.66 に寸法を示します.図 1.67 に歯形レンダリングを図 1.68 に歯当た りを示します、なお、図 1.68 のギャにかみ合うピニオンは、図 1.45 と同じ歯面修整を与えています.また,強度計算,伝達誤差解析, FEM 解析そして歯形出力などは「外歯車×外歯車」と同様です.

🔼 寸法諸元				- • •		
項目	記号	単位	Pinion	Gear		
モジュール	III.	mm	3	.00000 📃		
歯 数	z		22	65		
圧力角	αn	deg	20	.00000 *		
ねじれ角	β	deg	30 * 0	0.00 ″ 📃		
ねじれ方向			右ねじれ 👻	右ねじれ		
基準円直径	d	mm	76.21024	225.16660		
基礎円直径	db	mm	70.25753	207.57907		
歯厚入力方式			転位係数 ▼	転位係数 ▼		
転位係数	xn		0.10000	0.12300		
またぎ歯数	ZM		4	11		
またぎ歯厚	N.	mm	32.59267	97.35160		
測定ボール径	dp	mm	5.0000	5.0000		
オーバーボール寸法	dn	mm	83.32747	219.15593		
歯直角円弧歯厚	Sn	mm	4.93077	4.44378		
中心距離	a	mm	74	.54701		
歯直角法線歯厚減少量	fn	mm	0.05000	0.06000		
齿幅	b	mm	23.00000	23.00000		
齿先円直径	da	mm	82.81024	219.90460		
歯底円直径	df	mm	69.31024	233.40460		
歯先R	ra	mm	0.10000	0.10000		
基準ラック歯元R	rf	mm	1.1250 🛄	1.1250 📃		
	確)	τ.	キャンセル	<i></i> クリア		

図 1.65 諸元 (内歯車)

· 						• •
項目	記号	単位	Pinie	n		Gear
正面モジュール	mt	mm	3.46410			10
正面圧力角	αt	deg		22	.795	*
有効歯幅	bw	mm		23	.0001	10
リード	PZ	mm	414.	39023		1225.22113
転位量	Xm	mm	0.3	30000		0.36900
歯末のたけ	ha	mm	3.:	30000		2.63100
歯元のたけ	hf	mm	3.	\$5000		4.11900
全歯たけ	h	mm	6.	5000		6.75000
クリアランス	с	mm	0.	25017		0.75017
基礎円筒ねじれ角	βb	deg	28 *	1	'	27.55 ″
正面かみ合い圧力角	αw	deg	22 *	55	'	17.09 "
かみ合いビッチ円直径	d٧	mm	76.3	28066		225.37468
正面法線ビッチ	pbt	mm	10.03275			75
歯直角法線ビッチ	pbn	mm	8.85639			39
かみ合い長さ	ga	mm	14.05211			11
正面かみ合い率	εα		1.40062			32
重なりかみ合い率	εβ			1.22019		
全かみ合い率	εγ			2	.6201	81
すべり率(歯先)	σa		0.3	21134		0.37589
すべり率(歯元)	σb		-0.1	30227		-0.26797
設計またぎ歯厚	W	mm	32.	542672		97.411604
設計オーバーボール寸法	dn	mm	83.	98909		219.335224
設計歯直角円弧歯厚	sn	mm	4.1	377562		4.379928
正面円弧歯厚	st	mm	5.0	93564		5.131234
正面またぎ歯厚	Wa	mm	36.	865179		110.350381
キャリパ歯たけ	hj	mm	3.:	85981		2.62037
キャリバ歯厚	Sj	mm	4.1	37578		4.36991
基準ラック歯末のたけ係数	hac		1.	00000		1.00000
基準ラック歯元のたけ係数	hfc		1.:	25000		1.25000
バックラッシ	jt	mm		0	. 135:	29
法線方向バックラッシ	jn	mm		0	.107	91

図 1.66 寸法 (内歯車)

図 1.68 歯当たり (ギヤ)

1.19 HELP 機能

操作方法を知りたい場合は[HELP]機能を使うことができます. 例えば、歯車精度について知りたい場合は、「精度」フォームをア クティブにして[F1]キーを押すことにより図 1.69 のように精度に ついての説明を表示します.

図 1.69 HELP 機能

1.20 設計データ管理(保存・読み込み)

データベースの設定は、図1.70のように選択することができま す. また, 設計データは図 1.71 のように保存することができ, 図 1.72 のようにデータを読み込むことができます. データ読み込み は、管理番号やタイトルの他に歯車諸元(モジュール、歯数、圧 力角, ねじれ角) からも検索することができます.

8

AMTEC www.amtecinc.co.jp

1. 21 ISO 6336(2006): International Standard

Calculation of load capacity of spur and helical gears 以下に, ISO 6336(2006)の計算例を示します.

迄 プロパティ			- • ×			
基準ラック 寸法 精度	強度					
- 金属強度計算 ⑦ JGMA6101-02,6102-02 ⑦ JGMA401-01,402-01 ⑧ ISO 6336:2006	- 樹脂; ◎ JIS ◎ 樹別 ◎ 金	系強度計算 3 B 1759:2013 皆強度(Lewis) 禹×樹脂強度(Lewis	単位の種類 ● SI 単位 ○ mks 単位 			
· 確定 キャンセル 適用 標準に戻す						
図 1 72 時日	宙 ISC	(226 訳字な)	白山			

図 1.73 強度, ISO 6336 設定を追加

1.21.2 ISO 6336 規格

ISO 6336 の規格に基づいた計算例を以下に示します.

迄 寸法諸元				- • •
項目	記号	単位	Pinion	Gear
モジュール	mn	mm	3.	.00000 📃
歯 数	z		17	50
圧力角	αn	deg	20.	.00000 *
ねじれ角	β	deg	18 * 0 '	0.00 ″ 📃
ねじれ方向			(右ねじれ 👻)	左ねじれ
基準円直径	d	mm	53.62457	157.71933
基礎円直径	db	mm	50.08231	147.30093
歯厚入力方式			転位係数 ▼	転位係数 ▼
転位係数	xn		0.30000	-0.25000
またぎ歯数	ZM		3	6
またぎ歯厚	W	mm	23.58072	50.62097
測定ボール径	dp	mm	5.6169	4.9948
オーバーボール寸法	dm	mm	63.30911	162.87024
歯直角円弧歯厚	Sn	mm	5.36754	4.16643
中心距離	a	mm	106.	. 10000
歯直角法線歯厚減少量	fn	mm	0.30000	0.15000
齿幅	Ь	mm	30.00000	30.00000
歯先円直径	da	mm	61.40000	162.20000
歯底円直径	df	mm	47.95000	148.60000
歯先R	ra	mm	0.50000	0.30000
基準ラック歯元R	rf	mm	1.1000 📃	1.3500 📃
	確	Ê (キャンセル	クリア

図 1.74 諸元設定(外歯車×外歯車)

ISO 6336-1 General influence factors					
Load, torque, power Materials Factors					
Torque or Power		Pinion or Ge	ar		
O Torque → Power O Power → Torque		Pinion	🔘 Gear		
Item	Symbol	Unit	Pinion	Gear	
transmitted power	P	k 🛛 🕶	31.4169		
torque	Т	N·m 👻	300.0000 📃	882.3529	
rotation speed	n	min-1	1000.0000	340.0000	
number of load cycles	NL		1000000	•	
(nominal) transverse tangential load at referenc	Ft	N	11188.	9002	
tangential velocity	v	m/s	2.	8079	
angular velocity	ω	rad/s	104.7230	35.6058	
virtual number of teeth of a helical gear	zn		19.7620	58.1234	
gear accuracy grade ISO 1328-1			5 🕶	5 👻	
transverse contact ratio	εα		1.	2922	
overlap ratio	εβ		0.	9836	
	K 🗌 🗌	Dancel			

図 1.75 トルク,回転速度の設定, 6336-1

💈 ISO 6336-1 General influence factors					
Load, torque, power Materials Fi	actors				
Item		Pinion		G	iear
Material	Case hardened wrought s		nt steels [Case hardened	wrought steels 📃
Туре					
Abbreviation	Eh				Eh
Quality	ML				ML
Min. hardness(bending/contact)	600.0 600.0		600.0	600.0	600.0
Max. hardness(bending/contact)	800.0 800.0		800.0	800.0	800.0
Item		Symbol	Unit	Pinion	Gear
nominal stress number (be	nding)	σFlim	N/nm²	312.0	312.0
allowable stress number(co	ntact)	σHlim	N/nm²	1300.0	1300.0
hardness(bending)		HV		700.0	700.0
hardness(contact)		HV		700.0	700.0
modules of elasticity		E	N/nm²	206000.0	206000.0
Poisson's ratio		ν		0.30	0.30
	0	K	Cancel		

図 1.76 材料の設定

図 1.77 材料選択 1

pending contact								
Stress	Туре	Abbre- viation	Quality	Α	В	Hard- ness	Min. hardness	Max. hardnes
bending	core hardness:	Eh	ML	0,000	312	HV	600	800
	≥ 25 HRC,		MQ	0,000	425		660	800
	lower ≥ 25 HRC, upper			0,000	461		660	800
	≥ 30 HRC			0,000	500		660	800
			ME	0,000	525		660	800
Hardr	ness HV	700		σ	Flim		312.0	MPa

図 1.77a 材料選択 2 (曲げの例)

ad, torque, power Materials Factors								
Item	Symbol	Meth	od	Unit	Value			
application factor	KA	В	•		1.0000			
internal dynamic factor	Κv	В	•		1.0047			
face load factor (contact stress)	KH /A	В	-		1.3333			
face load factor (root stress)	KF 🖉	В	-		1.2524			
transverse load factor (contact stress)	KHa	В	•		1.0000			
transverse load factor (root stress)	KFα	В	•		1.0000			
maximum tooth stiffness per unit face width	c'	В	-	N/(mm·µm)	7.7682			
mean value of mesh stiffness per unit face width	cγa	В	-	N/(mm·µm)	9.6565			
mean value of mesh stiffness per unit face width	ογ β	В	•	N/(mm·µm)	8.2080			
OK	Car	ncel	OK Cancel Defau					

A, B, C 法を $\begin{bmatrix} B \\ A \\ B \end{bmatrix}$, $\begin{bmatrix} B \\ A \\ B \end{bmatrix}$, で選択することができます.

Working characteristic of	of Working characteristic of driven machine					
driving machine	Uniform	Light shocks	Moderate shocks	Heavy shocks		
Uniform	1,00	1,25	1,50	1,75		
Light shocks	1,10	1,35	1,60	1,85		
Moderate shocks	1,25	1,50	1,75	2,00		
Heavy shocks	1,50	1,75	2,00	≥ 2,25		

図 1.78a 係数 KA, 6336-1

🔼 internal dynamic factor Kv			
Method B C (graphical values) C (calculation)			
Item (Method B)	Symbol	Unit	Yalue
maximum tooth stiffness per unit face width		N/(mm·µm)	7.7682
mean value of mesh stiffness per unit face width		$N/(mm \cdot \mu m)$	9.6565
moment of inertia per unit face width(Pinion)	j1*	kg•mm²/mm	2.6017
moment of inertia per unit face width(Gear)	j2*	kg•mm²/mm	71.2424
reduced gear pair mass per unit face width referenced to	mred	ks/mm	0.0032
resonance speed	nE	min-1	31086.4345
resonance ratio			0.0322
resonance ratio in the main resonance range			0.8500
transverse base pitch deviation		μm	1.0000
estimated running-in allowances(single pitch deviation)		µ4 m.	0.0000
effected transverse base pitch deviation	fpbeff	μm	1.0000
profile form deviation	ffα	µ4 m.	1.0000
estimated running-in allowances(profile deviaion)	yf	μm	0.0000
effected profile form deviation	ffαeff	μm	1.0000
tip relief	Ca	μm	0.0000
non-dimensional parameter(single pitch deviation)	Bp		0.0208
non-dimensional parameter(profile deviaion)	Bf		0.0208
non-dimensional paramater	Bk		1.0000
factors for determination of Kv	Cv1 👻		0.3200
internal dynamic factor	Κv		1.0045
OK Apply	Canc	el	

図 1.78b 係数 Kv, 6336-1

🚬 face load factors KHβ and KFβ 📃 💽							
Method B © C							
Item (Method B)	Symbol	Unit	Value				
mean transverse tangential load	Fm	N	11241.4880				
maximum transverse tangential load	Fmax	N	13489.7856				
maximum load contact face width	bmax	mm	27.0000				
face load factor(contact stress)	KΗβ		1.3333				
face load factor(root stress)	KFβ		1.2524				
	ly Ca	ancel					

図 1.78c 係数 KHβ, 6336-1

transeverse load factors KHo and KFo						
Item (MethodB)	Symbol	Unit	Value			
transverse base pitch deviation(Pinion/Gear)	fpb	μm	1.0000	1.0000		
running-in allowance for a gear pair	yа	μm	0.0750			
determinant tangential load in a transverse plane	FtH	N	14988.2760			
transverse load factor (contact stress)	KHα		1.0000			
transverse load factor (root stress)	KFα		1.	.0000		
OK H	Apply	Cancel				

図 1.78d 係数 KHa, 6336-1

maximum tooth stiffness per unit face width c'					
Item (MethodB)		Unit	Value		
minimum value for the flexibility of a pair of meshing teeth	q	(mm·µm)/N	0.0580		
web thickness	bs	mm	30.0000		
rim thickness	sR	mm	10.1059		
theoretical single stiffness	c'th	N/(mm·µm)	17.2488		
correction factor	CM		0.8000		
gear blank factor	CR		1.0000		
basic rack factor	CB		0.5919		
maximum tooth stiffness per unit face width	c'	N/(mm· μ m)	7.7682		
mean value of mesh stiffness per unit face width	cγa	N/(mm·µm)	9.6564		
mean value of mesh stiffness per unit face width	ςγβ	N/(mm·µm)	8.2080		
OK Apply	Cano	el			

図 1.78e 係数 c', 6336-1

ISO 6336-2 Surface durability(pitting), ISO 6336-3 Tooth bending strength						
Contact(ISO6336-2) Bending(ISO6336-3)						
Item	Symbol	Method	Unit	Pinion	Gear	
zone factor	ZH			2	.3661	
single pair tooth contact factors	ZB,ZD			1.0098	1.0000	
elasticity factor	ZE		√ [−] N/mm²	189.8117		
contact ratio factor (pitting)	Zε			0	.8703	
helix angle factor (pitting)	Zβ			0.9752		
permit of pitting	when a certain degree of pitting is permissible				issible 🔻	
life factor for contact stress	ZNT	B 🕶		1.1294	1.1294	
lubricant factor	ZL	В		0.9917		
verocity factor	Zv	В		0.9701		
roughness factor affecting surface durabil	ZR	В		0.9917		
work hardening factor (reference stress)	Zw	В		1.0000		
work hardening factor (static stress)	Zw	В		1	.0000	
size factor (pitting)	Zx	В		1.0000	1.0000	
minimum required safety factor for surfac	SHmin			1.0000	1.0000	
Item (Pitting)	Symbol	Method	Unit	Pinion	Gear	
contact stress	σH		N/mm ²	1360.1103	1346.9000	
permissible contact stress	σHP	B 🕶	N/mm ²	1645.9399	1645.9399	
safety factor for pitting	SH			1.2102	1.2220	
	ОК	Canc	el		Default	

図 1.79 歯面強さ, 6336-2

Iubricant factor ZL			— ×
	1		
Item (Method B)	Symbol	Unit	Value
ISO viscosity class (grade)		mm²/s	VG 150 👻
nominal viscosity at 50°C 🛛 👻	ν50	mm²/s	89.0
nominal viscosity at 40°C	CZL		0.9100
Iubiricant factor	ZL		0.9917
ОК Арр	ly Ca	ancel	

図 1.79a	歯面強さ,ZI
凶 1.79a	密面強さ,Z

🔁 roughness factor affecting surface dur	ability ZR			×
Item (Method B)	Symbol	Unit	Pinion	Gear
mean peak-to-valley roughness	Rz	μm	3.0000	3.0000
radius of relative curvature	,ρ red	mm	7.3	237
mean relative peak-to-valley roughness for	Rz10	μm	3.3	282
factor for determining lubricant film factors	CZR		0.0	800
roughness factor affecting surface durability	ZR		0.9	917
OK Apply	Can	cel		
図1706 歯	両論さ	70		

図 1.79b 歯面強さ,ZR

 work hardening factor Zw Surface-hardened pinion with throug Through-hardened pinion and gear 	h-hardened	gear		×
Item (Method B)	Symbol	Unit	Val	ue
mean peak-to-valley roughness	Rz	μm	3.0000	3.0000
ISO viscosity class (grade)			VG	150 👻
nominal viscosity at 40°C	ν40	mm²/s	150.	0
radius of relative curvature	,∕ red	mm	7.	3237
The equivalent roughness	RZH	μm	5.	0559
pitch line velocity	٧	m/s	2.	8079
Brinell hardness	HB		622.	1
work hardening factor(reference)	Zw		1.	0000
work hardening factor(static)	Zw		1.	0000
OK	Apply	Can	cel	

図 1.79c 歯面強さ、Zw

ISO 6336-2 Surface durability(pitting)	, ISO 63	36-3 Toot	n benaing	g strength	
Contact(ISO6336-2) Bending(ISO6336-3)					
Item	Symbol	Method	Unit	Pinion	Gear
tooth form factor	YF	B 🕶		1.4316 🛄	1.7889
stress correction factor	YS			2.0437 🛄	1.7070
stress correction factor, relevant to the di	YST			2.	.0000
helix angle factor (tooth root)	Yβ			0.	.8525
rim thickness factor	YB			1.0000 🛄	1.0000
deep tooth factor	YDT			1.0000	1.0000
life factor for tooth root stress	YNT	B 🕶		0.9762	0.9762
relative notch sensitivity factor	Y∂relT	В		0.9977 🛄	0.9913
relative notch sensitivity factor for static	Y∂relT	В		1.0192	0.8711
relative surface factor	YRrelT	В		1.0663 🛄	1.0663
size factor (tooth root)	Yx	В		1.0000	1.0000
minimum required safety factor for tooth r	SFmin			1.0000	1.0000
Item (Bending)	Symbol	Method	Unit	Pinion	Gear
tooth root stress	σF	B 🕶	N/mm ²	390.1564	407.2120
permissible tooth root stress	σFP	B 🕶	N/mm²	663.8790	659.5739
safety factor for tooth breakage	SF			1.7016	1,6197
	OK	Canc	el		Defau

図 1.80 曲げ強さ 6336-3

💈 tooth form factor YF (Pinion)				
Item (Method B)	Symbol	Unit	Value	
residual fillet undercut	Spr	mm	0.0000	
root fillet radius of basic rack for cylindrical gears	,¢ fPv	mm	1.1000	
tip diameter (tip form diameter)	da(dNa)	mm	60.9880	
tooth root chord at the critical section	SFn	mm	6.3141	
bending moment arm for tooth root stress releva	hFe	mm	3.2481	
load direction angle, relevant to direction of appl	αFen	deg	23.4596	
Theta	θ	deg	47.6447	
tooth form factor	YF		1.4316	
OK Apply	Cancel			

図 1.80a 曲げ強さ, YF

stress correction factor YS (Pinion)			×
Item (Method B)	Symbol	Unit	Value
tooth root radius at the critical section	ρF	mm	1.3949
factor L	L		1.9439
notch parameter	qs		2.2633
stress correction factor	YS		2.0437
OK Ca	ncel		

図 1.80b	曲げ強さ,	YS
---------	-------	----

💈 rim thickness factor YB (Pinion)					
Item (Method B)	Symbol	Unit	Value		
rim thickness	sR	mm	10.1059		
tooth height	ht	mm	6.7373		
rim thickness factor	YB		1.0000		
ОК	Apply	Cance			

図 1.80c 曲げ強さ, YB

🚬 relative notch sensitivity factor YðrelT (Pinion)				
Symbol	Unit	Value		
Eh,IF(root);for all hardness				
Spr	mm	0.0000		
y∂ relT		0.9977		
YS		2.0437		
y∂ relT		1.0192		
iply C	ancel			
	YðrelT (Pi Eh,IF(root) Spr yðrelT YS yðrelT ply C	YõrelT (Pinion) Symbol Unit EhJF(root);for all ha Spr mm y ô reIT YS y ô reIT ply Cancel		

図 1.80d 曲げ強さ、YorelT

relative surface factor YRrelT	(Pinion)			— ×
Item (Method B)	Symbol	Unit	Pinion	Gear
mean peak-to-valley roughness	Rz	μm	3.0000	3.0000
relative surface factor	YRrelT		1.0	663
ОК	Apply	Car	ncel	
図 1 90-2	曲げる	+ V	D _{mo} lT	

図 1.80e 曲げ強さ, YRrelT

tems Pitting(P) Pitting(G) Bend	ing(P) Bendir	ng(G)		
Item	Symbol	Unit	Yalu	ie
application factor	KA		1.0	000
number of bins	Bin		64	
load spectrum time		Days	70.0000	
pitting life		Years	30.0000	
bending life		Years	30.0	000
safety factor for pitting	SH		1.409	1.552
safety factor for bending	SF		2.002	2.045

Calculate Cancel

図 1.81 寿命, 6336-6

		Calcu	lation of pitti	ne safety factor	from load spect	rum safety fa	ctor = 1.409			
Bin No.	Pinion torque T1 [N•m]	Time over 70 days [s]	Pinion speed n1 [r/min]	Stress cycles in 30 years N	Face load factor KH β	Contact stress σ H•SH [N/mf]	Life factor ZNT	Cycles to failure Nf	Damage parts Ui (N/Nf)	
1	309.677	0.000E+00	1000.000	0.000E+00					0.000E+00	
2	304.839	0.000E+00	1000.000	0.000E+00					0.000E+00	
3	300.000	1.656E+01	1000.000	4.320E+04	1.333	1916.412	1.545	1.793E+06	2.409E-02	
4	295.161	2.484E+01	1000.000	6.481E+04	1.333	1900.900	1.533	1.973E+06	3.284E-02	
5	290.323	3.313E+01	1000.000	8.643E+04	1.333	1885,263	1.520	2.175E+06	3.974E-02	
6	285.484	4.141E+01	1000.000	1.080E+05	1.333	1869.492	1.507	2.401E+06	4.500E-02	
7	280.645	4.969E+01	1000.000	1,296E+05	1.333	1853.587	1.494	2.655E+06	4.883E-02	
8	275.806	5.797E+01	1000.000	1.512E+05	1.333	1837.545	1.482	2.941E+06	5.143E-02	
9	270.968	6.625E+01	1000.000	1.728E+05	1.333	1821.364	1.469	3.263E+06	5.297E-02	
10	266.129	7.453E+01	1000.000	1.944E+05	1.333	1805.035	1.455	3.628E+06	5.360E-02	
11	261.290	8.281E+01	1000.000	2.160E+05	1.333	1788.557	1.442	4.041E+06	5.346E-02	
12	256.452	9.110E+01	1000.000	2.377E+05	1.333	1771.929	1.429	4.511E+06	5.269E-02	
13	251.613	9.938E+01	1000.000	2.593E+05	1.333	1755.140	1.415	5.045E+06	5.139E-02	
14	246.774	1.077E+02	1000.000	2.810E+05	1.333	1738.189	1.401	5.656E+06	4.968E-02	
15	241.935	1.159E+02	1000.000	3.024E+05	1.333	1721.071	1.388	6.354E+06	4.759E-02	

図 1.81a 寿命, Pinion(Pitting)

Calculation of bending safety factor from load spectrum safety factor = 2.002									
Bin No.	Pinion torque T1 [N•m]	Time over 70 days [s]	Pinion speed n1 [r/min]	Stress cycles in 30 years N	Face load factor KF ß	Bending stress of F•SF [N/mat]	Life factor YNT	Cycles to failure Nf	Damage parts Ui (N/Nf)
1	309.677	0.000E+00	1000.000	0.000E+00					0.000E+00
2	304.839	0.000E+00	1000.000	0.000E+00					0.000E+00
3	300.000	1.656E+01	1000.000	4.320E+04	1.253	781.480	1.177	6.724E+05	6.425E-02
4	295.161	2.484E+01	1000.000	6.481E+04	1.253	768.880	1.158	7.805E+05	8.304E-02
5	290.323	3.313E+01	1000.000	8.643E+04	1.253	756.282	1.139	9.081E+05	9.519E-02
6	285.484	4.141E+01	1000.000	1.080E+05	1.253	743.682	1.120	1.059E+06	1.020E-01
7	280.645	4.969E+01	1000.000	1.296E+05	1.253	781.082	1.101	1.239E+06	1.046E-01
8	275.806	5.797E+01	1000.000	1.512E+05	1.253	718.482	1.082	1.453E+06	1.041E-01
9	270.968	6.625E+01	1000.000	1.728E+05	1.253	705.884	1.063	1.709E+06	1.012E-01
10	266.129	7.453E+01	1000.000	1.944E+05	1.253	693,284	1.044	2.015E+06	9.648E-02
11	261.290	8.281E+01	1000.000	2.160E+05	1.253	680.684	1.025	2.384E+06	9.061E-02
12	256.452	9.110E+01	1000.000	2.377E+05	1.253	668.086	1.006	2.830E+06	8.399E-02
13	251.613	9.938E+01	1000.000	2.593E+05	1.253	655.486	0.987	5.823E+06	4.453E-02
14	246.774	1.077E+02	1000.000	2.810E+05	1.253	642.886	0.968	1.609E+07	1.746E-02
15	241.935	1.159E+02	1000.000	3.024E+05	1,253	630,286	0.949	4.536E+07	6.666E-03

図 1.81a 寿命, Pinion(Bending)

迄 寸法諸元				- • ×
項目	記号	単位	Pinion	Gear
モジュール	mn	mm	3.	.00000
歯 数	z		22	55
圧力角	αn	deg	20.	.00000 *
ねじれ角	β	deg	30 * 0 '	0.00 ″ 📃
ねじれ方向			(右ねじれ 👻	右ねじれ
基準円直径	d	mm	76.21024	190.52559
基礎円直径	db	mm	70.25753	175.64383
歯厚入力方式			● 転位係数 👻	転位係数 ▼
転位係数	xn		0.20000	0.30000
またぎ歯数	ZM		4	10
またぎ歯厚	W	mm	32.79788	88.22658
測定ボール径	dp	mm	5.1046	4.9818
オーバーボール寸法	dm	mm	84.21039	185.64691
歯直角円弧歯厚	Sn	mm	5.14915	4.05724
中心距離	a	mm	57.	. 40000
歯直角法線歯厚減少量	fn	mm	0.20000	0.10000
歯幅	Ь	mm	30.00000	30.00000
歯先円直径	da	mm	83.41024	186.32559
歯底円直径	df	mm	69.91024	199.82559
歯先R	ra	mm	0.20000	0.20000
基準ラック歯元R	rf	mm	1.1250 📃	1.1250 📃
	確	ε	キャンセル	クリア

図 1.82 諸元設定(外歯車×内歯車)

ISO 6336-1 General influence factors					
Load, torque, power Materials Factors					
Torque or Power		Pinion or Ge	ar		
Orque → Power ○ Power → Torque Orque Or	•	Pinion	🔘 Gear		
Item	Symbol	Unit	Pinion	Gear	
transmitted power	Р	kW 🔻	31.4169		
torque	T	N·m 👻	300.0000 🔝	750.0000	
rotation speed	n	min-1	1000.0000	400.0000	
number of load cycles	NL		100000	i00 🗸	
(nominal) transverse tangential load at referenc	Ft	N	7872.9582		
tangential velocity	v	m/s	3.	9905	
angular velocity	ω	rad/s	104.7230	41.8892	
virtual number of teeth of a helical gear	zn		33.8712	84.6780	
gear accuracy grade ISO 1328-1			3 👻	3 👻	
transverse contact ratio	εα		1.3539		
overlap ratio	εβ		1.	5915	
	K C	Dancel			

図 1.83 トルク,回転速度の設定, 6336-1

Contact(1506336-2)	Bending(ISO6336-3)							
It	em	Symbol	Method	Unit	Pinion	Gear		
zone factor		ZH			2	.1928		
single pair toot	h contact factors	ZB,ZD			1.0000	1.0000		
elastic	ity factor	ZE		√"N/mm²	189	.8117		
contact ratio	factor (pitting)	Zε			0.8594			
helix angle t	iactor (pitting)	Zβ	Ζβ 0.9					
permit	of pitting		when pitting is not permissible					
life factor for	contact stress	ZNT	В 🗸		1.1294	1.1294		
lubricant factor		ZL	в		0.9917			
verocity factor		Zv	В		0.9771			
roughness factor affecting surface durabil		ZR	В		1.0251			
work hardening fac	tor (reference stress)	Zw	В		1.0000			
work hardening fa	ictor (static stress)	Zw	В		1.0000			
size fact	or (pitting)	Zx	В		1.0000	1.0000		
minimum required sa	fety factor for surfac	SHmin			1.0000	1.0000		
Item (Pitting)	Symbol	Method	Unit	Pinion	Gear		
contac	t stress	σH		N/mm ²	553.7022	553.7022		
permissible contact stress		σHP	В 🕶	N/mm ²	1461.0010	1461.0010		
safety fact	or for pitting	SH			2.6386	2.6386		
		OK		,		Defe		

図 1.84 歯面強さ, 6336-2

Contact(ISO6336-2) Bending(ISO6336-3)					
Item	Symbol	Method	Unit	Pinion	Gear
tooth form factor	YF	B 🕶]		1.1648 📃	0.9122
stress correction factor	YS			2.1890 📃	2.3355
stress correction factor, relevant to the di	YST			2.0000	
helix angle factor (tooth root)	Yβ			0	7500
rim thickness factor	YB			1.0000 📃	1.0382
deep tooth factor	YDT			1.0000	1.0000
life factor for tooth root stress	YNT	B 🕶		0.9762	0.9762
relative notch sensitivity factor	Y∂relT	В		0.9970 📃	1.0009
relative notch sensitivity factor for static	Y∂relT	В		1.0832	1.1476
relative surface factor	YRrelT	В		1.0663 📃	1.0663
size factor (tooth root)	Yx	В		1.0000	1.0000
minimum required safety factor for tooth r	SFmin			1.0000	1.0000
Item (Bending)	Symbol	Method	Unit	Pinion	Gear
tooth root stress	σF	B 🕶	N/mm ²	210.5094	182.5903
permissible tooth root stress	σFP	B 🕶	N/mm ²	663.3908	665.9743
safety factor for tooth breakage	SF			3.1514	3.6474

図 1.85 曲げ強さ 6336-3