[21] L-Hypoid Gear Design System

🗵 21.1 L-Hypoid Gear Design System

21.1 Foreword

L-Hypoid Gear Design System can design the gear dimension, the tooth profile and strength calculation in the total and so on. A general hypoid gear is formed from the bevel gear generating machine. Therefore, a tooth profile is decided by the exercise of the tool and the machine. However, this software gives the offset to the spiral bevel gear with spherical involute tooth profile, it analyzes and decides the tooth profile of the pinion. The screen of L-Hypoid Gear Design software is shown in Fig. 21.1.

21.2 Gear dimensions

The dimension setting screen is shown in Fig.21.2. It is possible to input the standard value, when numerical value is uncertain, and it is possible that spiral angles, tooth thickness, offset and tool radii, etc. are freely set.

Fig21.2 Gear dimensions

21.3 Dimension calculation result

Each part dimension of the hypoid gears is calculated based on the AGMA2005-B88 standard. The dimension result is shown in Fig. 21.3.

Gear dimensions(ANSI/AGM)				×
Description	Symbol	Unit	Pinion	Gear
Mean transverse module	mm	mm		.11101
Concavity pressure angle	Phi 1	degree	13	.92678
Convex pressure angle	Phi 2	degree	24	.07322
Pitch cone top position	Z	mm		-0.0738
Position of tip cone top	Go,Zo	mm	9.9861	-1.2348
Position of the root cone top	GR,ZR	mm	13.6969	-0.0738
Outer cone distance	Ao	mm		141.7191
Mean cone distance	AmP,AmG	mm	128,1239	120.7213
Pitch diameter	d,D	mm	87.9334	270.0000
Outside tip diameter	do,Do	mm	103.8947	271.6387
Pitch cone angle	gamma,GAMMA	degree	16.78092	72.28633
Outside addendum	aoP,aoG	mm		2.6929
Outside dedendum	boP,boG	mm		9.2828
Outside work depth	hk	mm		10.8603
Outside whole depth	ht	mm	12.1669	11.9757
Mean addendum	aP,aG	mm	6.7945	2.1288
Mean dedendum	bP,bG	mm	3.2442	7.9099
Clearance	c	mm	1.1154	1.1154
Mean work depth	h	mm	8	. 9233
Mean whole depth	hm	mm		.0387
Sum of the dedendum angle	Sigma Delta	degree	5	.28816
Dedendum angle	Delta	degree	1.46901	3.74879
Addendum angle	Alpha	degree	3.58355	1.53937
Root angle	gamma R,GAMMA	degree	15.31191	68.53754
Face angle	gamma o,GAMMA o	degree	20.36446	73.82570
Virtual number of teeth at 90 degree	m90		-	.1308
Mean circular pitch	Pm	mm	16	.0567
Crossing point to outside tip	xo,Xo	mm	129.9617	40.6281
Mean pitch diameter	dm	mm	73.9820	229.9956
Thinning for backlash on center	fn	mm	0.0000	0.0000
Outside spiral angle of gear	Psi oG	degree		35.84757
Chordal thickness on center	tnc	mm	9.0596	4.7324
Chordal addendum on center	ac	mm	7.0674	2.1365
Total backlash	j	mm	0	.0000
Mean spiral angle	Psi P,Psi G	degree	48.44177	29.19668

Fig21.3 Dimensions result (Standard value)

Analysis accuracy, crowning and tip relief of the tooth profile are set in Fig. 21.4 in the modified gear dimension input screen. Reference figure of crowning and tip relief is shown in Fig.21.5 (a) and 21.5 (b). When adjusting a tooth contact pattern, it adjusts Crt and Crwt in Fig. 21.4 (a.)

Roughness of pinion Der	isity 🖣			Coarse
Face width partitions(hu)	55	Tooth de	epth partitions(vu)	55
Description	Symbol	Unit	Pinion	🗙 Gear
Tip radius	Rtip	mm	0.6000	0.6000
Heel crowning radius	Crwh	mm	500.0000	270.0000
Heel crowning quantity	Crh	mm	0.1000	0.0000
Toe crowning radius	Crwt	mm	500.0000	270.0000
Toe crowning quantity	Crt	mm	0.0300	0.0000
Heel tip modify value	Tr	mm	0.0000	0.0000
Heel tip modify depth	Th	mm	0.0000	0.0000
Face angle	gamma o,GAMMA o	degree	20.36446	73.8257
Root angle	gamma R,GAMMA R	degree	15.31191	68.5375
Outside addendum	aoG	mm		2.6929
Outside dedendum	boG	mm		9.2828
Outside tip diameter	do	mm	103.8947	

Fig.21.4 Modified gear dimension input screen

Fig.21.5 Crowning and tip relief

21.4 Assembly drawing

The hypoid gear dimension and position are shown in Fig. 21.6.

21.5 Gear strength

21.5.1 Power setting

The strength calculation of the hypoid gear is based on the ANSI / AGMA 2003-A86 standard. Power specification setting is shown in Fig. 21.7. Also, Life Factor graph is shown in Fig. 21.8 and Fig. 21.9.

Description	Symbol	Unit	Pitting	Bending
			-	-
Rated delivered horsepower	Po	kW	60.0	
Equivalent power	P	kW	***	***
Pinion rotational speed	np	rpm	1000.0	0000
Life cycles	N		1000000	
Working condition of the gear			General commer	cial application
Rotation's direction			Single re	volution
Crowning			not con	ducted
Mounting factos	Cmf		1.0	000
External dynamic factors	Са,Ка		1.000	1.000
Reliability factors	CR,KR		1.000	1.000
Temperature factoes	CT,KT		1.000	1.000
Frequency of pinion overload	/minute		1	
Frequency of gear overload/	minute		1	

21.5.2 Geometry factor

The standard value of geometry factor (I , J) are shown in Fig. 21.10, but the graph of Fig.21.11 and Fig.21.12 can be freely changed by consulting.

🦂 Geometry facto	r I,J		
Description	Symbol	Pinion	Gear
Geometry factor I	I	0.	18698
Geometry factor J	JP,JG	0.25438	0.31609
Offset coefficient	E/D	0.	15
Graph of geome	try factor	I 🔲 Graph of ge	eometry factor J
	OK	Cancel	

Fig.21.10 Geometry factor (Standard value)

Fig.21.12 Geometry factor (J)

21.5.3 Material

The setting screen of the material, heat-treatment, hardness and the permissible stress number are shown in Fig.21.13.

🦂 Strength item (materials)						×
Pinion material				Gear material			
Material name		Steel		Material name		Steel	
Material symbol		aaa		Material symbol		bbb	
Heat treatment	Carbu	rized & hardened	-	Heat treatment	Carbu	rized & hardened	-
Hardness(HRC)		60		Hardness(HRC)		55	
Allowable contact s	tress (MPa)	1240.0		Allowable contact s	tress (MPa)	1240.0	
Allowable bending s	tress(MPa)	380.0		Allowable bending s	tress (MPa)	380.0	
Reference table			OK	Cancel	Ela	stic modulus	

Fig.21.13 Setting of material

21.5.4 Gear strength value

The strength result of the hypoid gear is shown in Fig. 21.14.

Description	Symbol	Unit	Pinion	Gear
Gear ratio	mG			4.091
Tangential velocity at outer pitch circle	Vt	m/s		4.604
Efficiency	Zeta	%	9	6.379
Design pinion torque	TD	Nm		2.983
Operating pinion torque	TP	Nm		2,983
Contact strength				
Stress adjustment factor	Cb			0.634
Internal dynamic factor	Cv			0.928
U coefficient				0.239
Approximate internal dynamic factor	Cymin			0.238
Face contact ratio	mF			2.760
Size factor	Cs			1.000
Load distribution factor	Cm			1.200
Crowning factor	Cxc			1.000
Surface condition factor	Cf			1.000
Geometry factor				0.187
Life factor	CL			1.000
Hardness ratio factor				1.000
Allowable contact stress number		MPa	1240,000	1240.00
	Sac		597.278	575.65
Calculated contact stress number	Sc	MPa	258,621	249.25
Allowable transmitted power	Pac	kW	4,310	249.25
Allowances rate of the contact strength Bending strength	SFc			
Internal dynamic factor	Kv			0.928
Size factor	Ks		1.000	1.00
Load distribution factor	Km			1.200
Lengthwise curvature factor	Кх	T		1.061
Geometry factor	J	T	0.254	0.31
Life factor	KL			1.000
Allowable bending stress number	Sat	MPa	380.000	380.00
Calculated bending stress number	St	MPa	249.677	270.81
	Pat		91, 323	104.19

Fig.21.14 Gear strength value (Bending, Pitting)

21.5.5 Lifetime of the gear

The gear lifetime calculation result is shown in Fig. 21.15..

A Result of life				×
Life of pitting resistance	Symbol	Unit	Pinion	Gear
Prediction life factor	CL'		0.482	0.482
Prediction life load frequency	Nc	cycs	3.161E+20	3.161E+20
Prediction lifetime	Lc	hrs	8.781E+16	3.592E+17
Life of bending resistance	Symbol	Unit	Pinion	Gear
Prediction life factor	KL'		0.657	0.713
Prediction life load frequency	Nt	cycs	1.000E+07	1.000E+07
Prediction lifetime	Lt	hrs	2.778E+03	1.136E+04

Fig.21.15 Lifetime of the gear

21.6 Tooth rendering

The analysis of the tooth profile is based on the distribution number to the direction of the face width and the direction of the tooth height. A tooth rendering is shown in Fig. 21.16 and Fig. 21.17. The tooth profile rendering which is shown in Fig.21.18 is the figure which piled Fig.21.17 with the cutting cutter.

Fig.21.16 Tooth rendering-1

Fig.21.17 Tooth rendering-2

Rotation(X)	145	
Rotation(Y)	15	
Rotation(Z)	55	
Scale view	600	▲
Speed	1	•
Step angle	0.0	•
Interlocking angle	0.000	
Wire Frame Ba Display/Non-Display K Pinion	al-Calas	ection of rotation Default O Reverse

Fig.21.17a Control form

Fig.21.18 Tooth rendering-3 (+Conjugation cutter)

The generation procedure of the tooth profile of both gear is shown below.

- (1) The tooth profile of the gear is a spherical involute curve.
- The spiral curve of the gear is decided at the tool radius in Fig. 21.2.
- (3) The tooth profile of the pinion considers an offset and is generating the tooth profile which meshes with the gear.

21.7 CAD file

The tooth profile of the pinion and the gear can be output in DXF and the IGES file. A file output form is shown in Fig. 21.19. Then, CAD drawing a figure example is shown in Fig. 21.20 and Fig. 21.21.

Fig.21.21 CAD- drawing example (Gear-3D-IGES)

21.8 Analysis of tooth contact pattern (Optional)

Analysis setting and an analysis sample of tooth contact pattern are shown in Fig. 21.22 and Fig. 21.23. Also, contact value is shown in Fig. 21.24.

🦂 Tooth contact analysis			×
Description	Symbol	Unit	Model
Rotation angle of the gear	Theta r	degree	0.0000
Operation angle of the gear	Theta s	degree	0.0000
Pinion angle error (X)	Delta Phi x	degree	0.0000
Pinion angle error (Y)	Delta Phi y	degree	0.0000
Pinion angle error (Z)	Delta Phi z	degree	0.0000
Pinion setting error (X)	Delta X	mm	0.0000
Pinion setting error (Y)	Delta Y	mm	0.0000
Pinion setting error (Z)	Delta Z	mm	0.0000
Coordinates distribution number (Pinion)			1
Coordinates distribution number (Gear)			1
Contact limitative distance		Micro-m	600
Rotation distribution number			3
Check model Analysis	Contact view	Value	;
Contact view (1 pitch)	Contact viev	v (Rotatio	n)
Color distribution		Micro-m	300
Contact surface of pinion			
C Convex surface	Concavity s	urface	

Fig.21.22 Setting of tooth contact pattern

Fig.21.23 Contact pattern of teeth

Fig.21.23a Control form

Fig.21.24 Contact pattern of teeth (Value)

21.9 Bearing load

The setting of bearing computation and the calculation example of the bearing load are shown in Fig. 21.25 and Fig. 21.26.

Description	Symbol	Unit	Pinion	Gear
	Cymbol	01111		
Rotation's direction			Single r	evolution
Input method			Rated deliver	ed horsepower
Rated delivered horsepower	Po	kW	60	.000
Pinion rotational speed	np	rpm	1000.000	
Torque	T	Nm	572.983	
Circumferential force	Fu	N	15469.524	20356.524
Axial force	Fa	N	19024.492	4187.706
Radial force	Fr	N	2649.669	13279.054

Fig.21.25 Setting of bearing load-1

Description	Symbol	Unit	Pinion	Gear
Hold type	[]		Double end support 🔹	Cantilever support
Distance to center of face width	L	mm	122.668	36.731
Bearing span 1	X1	mm	50.000	50.000
Bearing span 2	X2	mm	50.000	50.000
Radial load by Fr Radial load by Fu	Wr(1) Wr(2)	N	1324.835 7734.762	26558.108 40713.048
			,	,
Radial load by Fu	Wr(2)	N	7734.762	40713.048
Radial load by Fu Radial load by Fa Radial load (Total)	Wr(2) Wr(3) Wr	N N	7734.762 7037.353	40713.048
Radial load by Fu Radial load by Fa Radial load (Total)	Wr(2) Wr(3) Wr	N N	7734.762 7037.353	40713.048
Radial load by Fu Radial load by Fa Radial load (Total) Radial load which is added to bear	Wr(2) Wr(3) Wr ing B	N N N	7734.762 7037.353 9615.582	40713.048 9631.538 44091.508
Radial load by Fu Radial load by Fa Radial load (Total) Radial load which is added to bear Radial load by Fr	Wr(2) Wr(3) Wr ing B Wr(1)	N N N	7734.762 7037.353 9615.582	40713.048 9631.538 44091.508

Fig.21.26 Setting of bearing load-2

Fig.21.26a Bearing support example

21.10 Required System Configuration

- (1) Operating system
 - Windows XP or Windows 7
- (2) Computer

Personal computer with Pentium 1 GHz or faster capable of running Windows

- (3) CD-ROM drive
- (4) Windows-compatible monitor with 1024 \times 768 or higher resolution
- (5) 1GMB or more of available memory space
- (6) 1GB or more of available hard disk space
- (7) Windows-compatible mouse or other pointing device
- (8) Windows-compatible printer