CT-FEM System (Ver. 3.0)

0. Introduction

Since its initial release in September 2004, the CT-FEM System has been praised by many specialists involved in the limit design of gears because of the product's well-matched laboratory results against pre-analysis simulation for gear pairs with bias modification or axis angle errors. The product's high reputation is partly because its operation is similar to ordinary gear designing.

The CT-FEM System (Ver. 3) includes a number of new features that respond to our customer needs. For details, refer to the following sections.

1. Summary

Stress analysis using the finite element method (FEM) is a strength analysis on the order of millimeters. On the other hand, the analysis of meshed tooth profiles is on the order of micrometers. Moreover, FEM in general does not produce good results in contact problem analyses and it has been considered that analyzing stresses on a pair of meshed gears, taking into account the tooth profile shape, is not possible using FEM.

The CT-FEM System's newly developed FEM gear stress analysis software is capable of handling gear contact problems. It features flexible operation for machine designers. Fig. 1.1 shows the application window of the CT-FEM System.

Fig. 1.1 CT-FEM System

2. Initial Setting

- 2.1 Applicable gear pair: Involute gear
 - External gear \times External gear
 - External gear \times Internal gear
- 2.2 Basic rack: Full depth tooth, stub gear tooth, and special tooth The gear property and mesh setting windows are shown in Fig.s 2.1 and 2.2, respectively.

Gear Proper Tip Circle decision	ty method —				🖀 Setting of me
 Standard 	C	Equal clearance			-Setting of mesh(2D)
Setting of the basi	stub	Ether			Ratio of the minim
Presure Angle	Alphan	20.0000	deg		Racius of fragme
Description	Symbol	Pinion	Gear	2	Number of partitions
Addendum factor	hac	1.2000	1.2000	+·	reamber of partitions
Dedendum factor	hfc	1.5500	1.5500	Ro AFE	
Root R	Rc	0.3000	0.3000	Roge Rock tok	Pinion
Clearance	clic	0.3500	0.3500	Dase hack	Gear
Relationship be xn to centre Centre dista xn no relation	ween the o distance nce to xn n to centre	distance	Combine © Exte © Exte	tion of the gear rnal and External rnal and Internal	Pinion levoversi Magnification of o Number of

Fig. 2.1 Initial Gear Property Setting

Fig. 2.2 Mesh Setting

36.314

joki

Default

3. Gear Dimension Entry (1/4)

An example of FEM analysis of a pinion/gear pair is shown below. As shown in Fig. 3.1, gear dimension entry is a straightforward process; the user simply specifies gear dimensions from "Normal module" up to "Root diameter" in sequence. To provide a backlash, specify a longer center distance. Fig.s 3.2 and 3.3 show the 3D rendering of the pinion/gear under discussion. The CT-FEM System is capable of showing only the film elements of the tooth faces. This feature facilitates the observation of the face-to-face contact when an intersecting/parallelism angle error and a tooth profile modification are specified.

Fig. 3.1 Gear Dimension Settings

Fig. 3.2 Tooth Profile Rendering

Fig. 3.3 Film Element Profile Rendering

4. Mesh Generation (2/4)

For FEM analysis, the CT-FEM System uses the secondary tetrahedral elements (see Fig. 4.1) to divide gears into meshes automatically. Since, in the mesh division condition settings, the division accuracy can be specified separately at the root, face, and tip of the pinion/gear, as shown in Fig. 4.2, you may choose to generate finer meshes for portions subjected to stress concentration and coarse meshes for the remainder.

The generated meshes can be viewed as shown in Fig. 4.3 and Fig. 4.4. In these figures, the mesh with the maximum flat degree among the generated meshes can be viewed as well. If you are not satisfied with the generated meshes, you can regenerate meshes by changing the division accuracy and number of nodes settings in Fig. 4.2.

Fig. 4.1 Secondary Fig. 4.2 Mesh Generation Conditions Tetrahedral Elements

Fig. 4.5 shows the result of automatic mesh generation based on the mesh generation conditions shown in Fig. 4.2. As you can see, for the pinion, the number of 3D nodes is 32634 and the number of 3D elements is 20770. Fig. 4.6 shows the dimensions of the pinion/gear under discussion.

🔓 Result of gear dimensions and mesh 🔳 🗖 🗙						
Result of gear dimensior	Result of mesh division					
Descrioption	Pinion	Gear				
Number of external nodes	102	71				
Number of internal nodes	98	61				
Numberof nodes(2D)	282	248				
Numberof elements(2D)	460	417				
Numberof nodes(3D)	32634	30895				
Numberof elements(3D)	20770	20251				
Maximum Flat degree	44.6085	52.8704				
Average Flat degree	20.5680	20.1213				
Element/Node list Analysis start						

Fig. 4.5 Result of Mesh Division

Result of gear dimension	s		Result of me:	sh division
Description	Symbol	Unit	Pinion	Gear
Base diameter	db	mm	44.2568	77.4494
Reference diameter	d	mm	46.1880	80.8290
Tif diameter	dt	mm	44.2688	77.5820
Normal tooth thickness	sn	mm	3.2452	3.0383
Transverse tooth thickness	st	mm	3.7472	3.5083
Transverse pressure angle	at	deg	1	6.6270
Number of teeth spanned	zm	[3	5
Base tangent length(Standard)	W	mm	15.734	27.945
Base tangent length(Design)	W	mm	15.634	27.845
Measuring ball diameter	dp	mm	3.406	3.271
Dimension over balls(Standard)	dm	mm	51.481	84.885
Dimension over balls(Design)	dm'	mm	51.183	84.518
Pitch diameter	dvv	mm	46.4696	81.3217
Working transverse pressure angle	awt	deg	1	7.7525
Transverse contact ratio	Ka	· [1.7588
Overlap ratio	Kb	「 「		0.7958
Total contact ratio	Kc	「		2.5545
Specific ratio at tip	Slipa	· [0.7436	0.8830
Specific ratio at root	Slipb	· [-7.5480	-2.8996
Backlash angle	Angj	deg	0.5918	0.3382
Transverse backlash	jtt	mm		0.2286

Fig. 4.6 Results of Gear Dimensions

5. Rotation Angle and Torque Setting (3/4)

As shown in Fig. 5.1 and 5.2, the contact point(s) of the meshed gears can be adjusted by changing the pinion rotation angle. The graph in Fig. 5.3 shows the relationship between the contact diameter and roll length. The pinion and gear are in two-point contact where the roll length matches and in single-point contact otherwise. The rotation angle and the contact diameter at these contact points are indicated. The CT-FEM System supports up to three-point contact analysis; the user will be prompted to choose the number of faces to be analyzed between 3 and 1. The Rotation angle reference window shown in Fig. 5.4 may be used to obtain the pinion/gear diameter of the contact point, pinion/gear roll length, and pinion rotation angle by specifying only one of these five elements. If you want to know the rotation angle when the pitch circle diameter of the pinion makes contact, specify the "Diameter of the contact point" for the pinion in Fig. 5.4. Then, the pinion rotation angle required in Fig. 5.1 will be known.

If the contact ratio is between 1 and 2 inclusive, when the tip of the pinion makes contact, the adjacent tooth profile is also in contact (two-point contact). However, if the pinion makes contact at the center of its whole depth, it is in a single-point contact state. This means it is not possible to determine which rotation angle causes the maximum stress unless you collect multiple design data. Also, it should be noted that the rotation angle causing the maximum tooth face stress and the rotation angle causing the maximum tooth root stress do not always match. In the CT-FEM System, you specify the pinion rotation angle measured at the center of the face width. For helical gears, this may be difficult to view in the 2D mesh model. If so, use the 3D meshing model (see Fig.3.2 and Fig. 3.3).

Calculations

Fig. 5.3 Pinion-Gear Meshing Graph

6. Tooth Modification (4/4)

6.1 Tooth Modification (Standard)

Fig. 6.1 shows the setting window for the tooth modification and gearshaft mounting error data. The CT-FEM System provides four kinds of standard-form profile/flank modifications. As shown in Fig. 6.2 and 6.3, tooth modifications can be specified by the roll length, modification amount, and profile radius, which can be viewed as graphs in Fig.6.4 and 6.5. The system also supports the tooth profile, face, and flank modifications. These custom tooth modifications may be specified in the window shown in Fig. 6.6.

🛔 Tooth r	nodification(4/4				
	Descripption		Symbol	Unit	Pinion
Int	ersecting error angle	e	fai1	deg	0.00000
P	aliallel set error angle	9	fai2	deg	0.00000
kind of toot	n modification Pro	ofile,Flank mo	dification	• E	mor Angle Ref. Fig
Pinion Pro	ile Pinion Flank	k Gear	r Profile	Gear F	lank
Type of too	th modification(Gear C type2 C	r)-Width	type4	• nothin	a
Type of too	th modification(Gear	r)-Width type3 (type4	nothin	9
Type of too	th modification(Gear C type2 length(mm) 18.2614	r)-Width type3 (iOK] 3raph	type4	(* nothin ingth(mm) 2.2671	9
Type of too C type1 Tip Rol	th modification(Gear C type2 C length(mm) 18.2614 (tion(unit=micro-m)	r)-Width type3 (iOK) 3raph Plus directio	type4 Tif Roll le	nothin angth(mm) 2.2671 sified contec	9 t
Type of too C type1 Tip Rol	th modification(Gear C type2 C length(mm) 18.2614 (tion(unit=micro-m) Left tooth	r)-Width type3 (jOK] 3raph Plus directio Middle to	i type4 Tif Roll le n is intens	nothin ngth(mm) 2.2671 sified contac Right too	a t
Type of too	th modification(Gear C type2 C length(mm) 18.2614 (Left tooth 0.0000	r)-Width type3 (jok] Graph Plus directio Middle to 0.0	type4 Tif Roll le n is intens oth	nothin ngth(mm) 2.2671 sified contac Right too 0.00	g t th Ref. Fig

Fig. 6.1 Profile and Flank Modification Settings (Standard)

6.2 Tooth Modification (Biased) - Optional

As a custom modification, the CT-FEM System provides profile modifications (see Fig. 6.7), flank modifications (see Fig. 6.8), and profile-based or flank-based face modifications (see Fig.6.9 and 6.10). The profile modification graph can be divided into up to 20 graphs, providing a simple error setting method as shown in Fig. 6.11. Moreover, topography can be used for checking how the modifications occur.

🚯 Tooth modification(4/4)			
Descrioption	Symbol	Unit	Pinion
Intersecting error angle	fai1	deg	0.00000
Pallallel set error angle	fai2	deg	0.00000
kind of tooth modification Tooth face mod	lification	- E	rror Angle Ref. Fig
Pinion Gear	ОК		

Fig. 6.6 Profile and Flank Modification Settings (Custom)

Fig. 6.7 Profile Modifications

🔒 modif	fy [Pinion]							X
Object	Pinion modify V Modify Flank modify	 Division 	9	Conect	Bspline	▼ Scale	100	-
Тор +	Left Flank 1 Botto	om Top ⁺	┢	⊢ Ri	aht Flank	1	d Bott	torn
	scale='	100 -					scale=	=100
	Clear			Clear		Τα	poGrap	hy

Fig. 6.8 Flank Modifications

Fig. 6.11 Error Setting Method

Fig. 6.12 Topography

After specifying an error angle and modification amount, you can view the face-to-face contact state in the Tooth Profile Rendering window shown in Fig. 3.3. This feature is useful when checking the design data for validity and entry errors prior to the analysis stage.

6.3 Gearshaft Mounting Error Angle - Optional

Fig. 6.13 shows the window for setting the gearshaft intersecting and parallelism error angles.

6.4 Pitch Error - Optional

In the pitch error setting, a separate value can be specified for each of the film elements, "Left tooth," "Middle tooth," and "Right tooth." For example, assume a two-point contact state in which the pinion and gear make contact at the "Left tooth" and "Middle tooth." In this case, specifying an error amount of 1 µm at the "Left tooth" will enlarge the contact area on the "Left tooth" accordingly because the profile will be shifted by the specified amount from the theoretical position.

Fig. 6.14 Pitch Error Entry

7.1 Analysis

Once (1) gear dimension settings, (2) mesh generation settings, (3) rotation angle and torque settings, and (4) tooth modification/error angle settings have been completed, you can start an analysis. However, before doing so, your design data can be saved.

An analysis consists of (1) tooth face stress calculation and (2) FEM analysis of the mesh models, performed in this order. The CT-FEM System also provides options for running multiple analysis processes efficiently. These options may be used as required.

When the analysis is completed, the analysis results can be viewed using the following windows: (1) FEM Analysis Result List for showing the element stress, node displacement, node stress, and film stress values, (2)Stress Distribution Fig., (3) Displacement Distribution Fig., (4) Film Element Stress Distribution Fig., (5) External Surface Maximum Stress List, (6) Displacement of Face Graphs, (7) Film Element Stress Color Distribution List, and (8) Inner Stress List.

The analysis results will show a total of 10 types of stresses, that is, six stress components, three principal stresses, and one equivalent stress. On the other hand, displacement will be reported in four types: displacement in the x-, y-, and z-axis directions and the total displacement.

8 FEM Analysis Result (Stress/Displacement Value List)

Fig. 8.1 is a FEM Analysis Result list showing stress values. Clicking a column header sorts the stress values in that column in an ascending order. This feature is convenient when you check the node or element number where the stress becomes the maximum. After this check, you can set the element and node to flash in stress distribution figures, so that you can easily notice where in the figure the stress becomes the maximum.

Benent Stre	so(P)	Node of	#spiece	ernenti(P)						
Element Stre	15(G)	Node d	fisplace	ment(G	3					
Node Stress	(P) F	ilm Stree	88(P)			-				
Node Stress	(G) F	le Stree	55(G)	i La	Serue					
Element	St	xx	S	YY	St	z	Txy			
1	0.	0181	-0	.1863	-0,	1007	-0.0	300	Г	
2	0.	0102	-0	1393	0.0	3309	-0.0	603	Г	
3	0.	0078	-0	.1133	0.1	1191	-0.0	669	Г	
4	0.	0270	-0	0900	0.	2226	-0.0	690	T	
5	0.	0552	-0	.0723	0.	2975	-0.0	492	T	
		0700		ALC: N		2200			+	-

Fig. 8.1 Stress/Displacement Value List (showing 10 types of stress values)

Element Stress(P)	Note displacen	ert(P)		
Benent Stress(0)	Node sloplacers	50(0)		
Node Stress(P)	Film Stress(P)	Indicate No.		
Node Street(0)	Tile Stress(G)	1		
Node Number	displacement x	displacemently	displacement z	total displace
12611	0.0093	-0.0004	-0.0028	0.000
12649	0.0093	-0.0004	-0.0028	0.00
12647	0.0093	-0.0003	-0.0028	0.00
12615	0.0093	-0.0005	-0.0028	0.000
12650	0.0093	0.0000	-0.0028	0.000
12651	0.0093	-0.0006	-0.0028	0.000
12907	0.0093	-0.0002	-0.0028	0.00
12614	0.0093	0.0001	-0.0028	0.00
12618	0.0093	-0.0001	-0.0025	0.00
12648	0.0093	0.0002	-0.0028	0.00
12652	0.0093	-0.0001	-0.0028	0.00
11908	0.0093	0.0004	-0.0028	0.00
11542	0.0093	0.0005	-0.0027	0.00
12619	0.0093	-0.0006	-0.0025	0.00
11504	0.0093	0.0006	-0.0027	0.00
11544	0.0093	0.0003	-0.0028	0.00
11540	0.0093	0.0007	-0.0027	0.00
12622	0.0093	-0.0002	-0.0028	0.00
12610	0.0093	0.0003	-0.0028	0.00
12645	0.0093	-0.0001	-0.0028	0.00

Fig. 8.2 Stress/Displacement Value List (showing three types of displacement values)

9 FEM Analysis Result (Stress Distribution Fig.)

The Stress Distribution Fig. shows the distribution of the stress components σx , σy , σz , σm , and the principal stresses S1, S2, S3. Fig.9.1 to 9.7 show the stress distribution of the pinion for this example. The distribution figures for the example gear will be displayed in a similar fashion. These figures can be enlarged, shrunk, and rotated; and the desired element and node numbers can be set to flash on the display.

Fig. 9.1 Stress Distribution Fig. (om)

Fig. 9.6 Principal Stress (S2)

Fig. 9.7 Principal Stress (S3)

10 FEM Analysis Results (Displacement Distribution Fig.)

The Displacement Distribution Fig. is a colored representation of the displacement distribution in the x-, y-, and z- directions, and the overall displacement distribution. Fig. 10.1 shows a sample displacement distribution figure.

This figure can be zoomed in, zoomed out, and rotated; and the desired element and node numbers can be set to flash on the display.

Fig. 10.1 Displacement Distribution Fig. and Control Form

11 FEM Analysis Result (External Surface Maximum Stress)

Fig. 11.1 shows an External Surface Maximum Stress list. The item "Tooth face maximum compress stress" indicates the stress applied to the external surface of the mesh model after FEM analysis. Check the element numbers where the items "tooth face compressive stress," "tooth root compressive stress," and "tooth root tensile stress" become the maximum. Then, set so that the points with the maximum stress flash in the Stress Distribution Fig..

🔓 External surface maximum stress (Middle)		
Kind of tooth C Left I Mild C Right	Uni	t=MPa	
Pinion (External surface stress)			
	Element NO	Principal stress	Effective stress
Tooth face maximum compressive stress	11391	-203.6718	161.4313
Tooth root maximum compressive stress	15026	-156.9317	138.7023
Tooth root maximum tensile stress	11222	152.2325	139.9414
Gear (External surface stress)			
	Element NO	Principal stress	Effective stress
Tooth face maximum compressive stress	11794	-149.3155	120.6231
Tooth root maximum compressive stress	7656	-156.1898	134.1363
Tooth root maximum tensile stress	12858	145.0328	123.7204

Fig. 11.1 External Surface Maximum Stress List

12 FEM Analysis Result (Displacement of face graphs)

Each graph in Fig. 12.1 shows the displacement of the tooth face.

Fig. 12.1 Displacement of Face Graph

13. Tooth Face Stress Analysis Results (Film Element Stress Distribution Fig.)

The stress applied on the tooth faces will be displayed as shown in Fig. 13.1. By showing and hiding the tooth faces (film elements) of the pinion and gear, stress distribution on the pinion/gear can be viewed individually, or in an in-mesh state. The tooth face stress values may be checked on the Stress Value List (see Fig. 8.1) and the Film Element Stress Color Distribution List (see Fig. 14.1).

Fig. 13.1 Film Element Stress Distribution Fig.

14. Tooth Face Stress Analysis Result (Film Element Stress Color Distribution List)

Like the film elements shown in Fig. 13.1, the Film Element Stress Color Distribution List shows stress values across cells in 40 rows and columns (if the number of divided film elements is 41).

Fig. 14.1 Film Element Stress Color Distribution List

15. Analyze Film Stress Only - Optional

As shown in Fig. 15.1, the CT-FEM System runs an analysis sequence by first analyzing the face-to-face contact between the pinion and gear. It then performs a FEM analysis by simulating the tooth face stress distribution on each mesh model. This feature, when enabled, stops the analysis sequence as soon as the face stress calculation is completed. This leads to reduced analysis time because FEM analysis can be omitted if only the face stress analysis is required. Moreover, because whether or not FEM analysis is required can be judged based on the result of the tooth face stress analysis, if you eliminate toque unit and rotation angle setting errors at this point, the time for doing FEM analysis can be saved.

At the end of film element analysis, the Film Element Stress Distribution Fig. and Film Element Stress Value List can be displayed. Because FEM analysis is not completed, analysis results using the mesh models cannot be displayed.

To perform a FEM analysis after the completion of the tooth face stress analysis, click the [Analysis Start] button. A FEM analysis will start immediately since the tooth face stress calculation has been completed.

16. Continuous Calculation (Batch Processing) - Optional

When this option is enabled, analyzing multiple design data and saving the results will be completed by a single mouse click.

You can choose [Analyze FEM and Film stress] or [Analyze only Film stress]. This is a useful feature when analyzing multiple design data because it is an automated process.

17. Calculate Each Angle (Batch Processing) - Optional

This feature can be used to reanalyzes multiple design data by changing only the rotation angle data. Fig. 17.1 shows the window in which you enter rotation angle values.

🚰 Calculate each angle					
Descrioption	Symbol	Unit	Pinion		
Min Rot. Ang.	Sita-min	deg			
Max Rot. Ang.	Sita-max	deg			
Number of Data	Nd				
Management number					
Analyze FEM and Fill Analyze only Film str Make only Design Da	ioki Cancel				

Fig. 17.1 Calculate Each Angle Window

18. Distribution Fig. Color Range Change - Optional

In the "Stress Distribution Fig.," "Displacement Distribution Fig.," and "Film Element Stress Distribution Fig.," the minimum and maximum value ranges are shown in blue and red, respectively. Using this feature, the values shown in blue or red can be changed as desired. Because the maximum and minimum values (that is, the values shown in red and blue) differ depending on the pinion rotation angle, it is useful when you compare multiple analysis results.

19. Animation Display - Optional

Using this feature, the "Stress Distribution Fig.," "Displacement Distribution Fig.," and "Film Element Stress Distribution Fig." from multiple design data can be viewed sequentially. This feature is effective only when all design data have the same gear dimensions and the same number of mesh divisions.

By running an animation of multiple analysis results including different rotation angles, you can view how the stress distribution changes with the rotation angle.

When animating Stress Distribution Figs, the stress distribution data displayed in the animation can be changed by changing the data number and change speed settings in the animation control window.

X Rot.	-32 4		• 0	Unit MPa)
Y Rot.	180 4		•	114.472
Z Rot.	0 📢		•	
Scale View	9852 📢		•	
Wire	Frame Ba	ckColor		
flashing display				
Element	ent 🔿 Nod	e		
Elemnt NO.		Flas	sh	
Kind of Stress				
C 04 C	N. C.		- 1 m	
C 51X C	Sty C S	я <u>г</u> (с	sum	
St1 St1	C St2	C St3		-30.731
Input maxire	d) and min(blu	e) value of co	nlor distribu	tion OK
http://ktory	-74	6334	1.62	6747
INIT 7 Max	-34.	5556	102.	6/4/
Pinion Rot. ang	(deg)		9.0000	
Data NO.	8	•		•
				۱.
Change sper	ed 🖣			
Change sper File name	ed 1	rotA	IncData 15	

20. Internal Stress - Optional

This option is used to view the stress distribution within a mesh model, which cannot be viewed using a Stress Distribution Fig. that shows external stress on a mesh

model. As shown in Fig. 20.1, stress values Fig. 20.1 Internal Stress Graph of different diameters along a point on the Z-axis (axial direction of gear) are plotted on a graph. Internal stress can also be viewed using Internal Stress Distribution Fig. shown in Fig. 20.2 and 20.3. These are cross-sectional views along a point on the Z-axis (axial direction of gear), which can be used to check the internal stress distribution and the stress value at the desired point.

Fig. 20.2 Internal Stress Distribution Fig.

Fig. 20.3 Internal Stress Distribution Fig. (Enlarged View)

21. Mesh Model with Rim and Hub - Optional

Mesh models with a rim and a hub can be created. This feature is used when checking the relationship between the rim thickness and the root stress. Increasing the rim thickness will not affect the root stress greatly, once a certain rim thickness has been reached.

Fig. 21.5 Ex. Rim Thickness is 0.5 mm (Tooth Root Tensile Stress σ 1=23.4 MPa)

Fig. 21.6 Ex. Rim Thickness is 1.5 mm (Tooth Root Tensile Stress σ 1=16.8 MPa)

Fig. 21.7 Ex. Rim Thickness is 2.5 mm (Tooth Root Tensile Stress σ 1=16.2 MPa)

22. Internal Gear Calculation Example - Optional

The following shows an example of FEM analysis on an internal gear. The entry of internal gear data is similar to that of external gears. The user simply specifies gear dimensions from "Normal module" up to "Root diameter" in sequence. Example gear dimensions are shown in Fig. 22.1.

Descripption	Symbol	Unit	Pinion	Gear (internal			
Normal module	mn	mm	2	.00000			
Number of teeth	z		2.0	55			
Normal pressure angle	alpha-n	deg	20	.00000			
Helix angle	beta	deg	20 0 0				
Direction of helix			Right hand	Right hand			
Addendum modification coefficient	xn		0.00000	0.5000			
Centre distance	a	mm	38.17460				
Thinning for backlash	fn	mm	0.1000	0.1000			
Facewidth	b	mm	10.0000	10.0000			
Tip diameter	da	mm	46.5671	115.0596			
Root diameter	df	mm	37.5671	124.0596			
Internal tooth tip chamfering	с	mm		0.0000			

Fig. 22.1 Gear Dimension Settings (Internal Gear)

Fig.s 22. 2 and 22.3 show the analysis conditions for this example. As shown in Fig. 22.4, the pinion will be given a crown of 20 μ m in this analysis. Fig.s 22.5 to 22.9 show the results of this analysis.

Fig. 22.2 Mesh Generation Settings Fig. 22.3 Rotation Angle Settings

Fig. 22.4 Tooth Flank Modifications

Fig. 22.5 Stress Distribution Fig. (om)

Fig. 22.6 Stress Distribution Fig. (om)

Fig. 22.7 Film Element Stress Distribution Fig.

23. Comparison with Strength Calculation Result (Analysis Example)

A FEM analysis was made on the example gears shown in Fig. 3.1 by giving an intersecting error angle of 0.05° and tooth flank modification shown in Fig. 23.1. The following are a comparison between the analysis results (Fig.s 23.2 to 23.5) and the gear strength calculation results (Fig.s 23.6 to 23.9).

The strength calculation was made in accordance with two standards, JGMA401-01/402-01 and ANSI/AGMA2001-C95. The calculation results are summarized in Table 23.1. The comparison results show that giving an intersecting error and tooth flank modification as analysis conditions doubles the stress compared with the strength calculation results, but does not affect greatly the root bending stress.

Fig. 23.1 Tooth Flank Modifications (20 µm from ends)

Fig. 23.2 Stress Distribution Fig. (om)/Pinion

Fig. 23.3 Stress Distribution Fig. (om)/Gear

Fig. 23.4 Film Element Stress Distribution Fig.

🔒 External surface maximum stress (
C Left C Mid C Right	Un	it=MPa			
Pinion (External surface stress)					
	Element NO	Principal stress	Effective stress		
Tooth face maximum compressive stress	11390	-1017.2688	730.5643		
Tooth root maximum compressive stress	15041	-278.4335	245.0477		
Tooth root maximum tensile stress	10893	286.6533	254.0036		
Gear (External surface stress)					
	Element NO	Principal stress	Effective stress		
Tooth face maximum compressive stress	11538	-614.1417	459.1241		
Tooth root maximum compressive stress	7644	-405.7201	359.4822		
Tooth root maximum tensile stress	12847	344.5038	299.1319		

Fig. 23.5 External Surface Maximum Stress

項目(曲げ)	記号	里位	ビニオン	キヤ	
許容曲げ応力	σFlim	MPa	333.500	333.500	
曲げ有効歯幅	b'	10	10.000	10.000	
齿形係数	YF		3.596	3.465	
荷重分布低数	Ys		0	570	
Data shown in Japanese					
呼び円周力	Ft	N	2151	.946	
許容円周力	Ftlin	N	4150.792	4307.309	
曲げ強さ	Sft		1.929	2.002	
歯元曲げ応力	σF	MPa.	172.900	166.618	
項目(面圧)	記号	単位	ピニオン	ギヤ	
許容ヘルツ応力	O'HI im	MPa	1284.500	1284.500	
面圧有効歯幅	bw	m	10.000		
領域係数	ZH		2.440		
寿命係数	KHL		1.000	1.000	
かみあい率係数	Ze		0.811		
粗さ係数	ZR		1.077	1.077	
混骨速度係鼓	ZV		0.959	0.959	
硬さ比係数	ZW		1.000	1.000	
简重分布係数	KHAS		1.000		
動荷重係数	Kv		1.045		
呼び円周力	Fc	N	2165	.063	
許容円周力	Felin	N	3509.608	3509.608	
歯面強さ	Sfc		1.621	1.621	
ヘルツ応力	σH	MPa.	1008.881	1008.881	

平、はすば歯車強度計算結果(JGMA:401-01,402-01)

Fig. 23.6 Strength Element Settings by JGMA

Fig. 23.7 Strength Results	5
----------------------------	---

by JGMA

項目	記号	単位	ビニオン	ギヤ	
伝達動力	Ρ	k¥	3.141		
ビニオン回転数	np	rpn	600.000		
寿命繰り返し数	N		1	000	
ビニオン軸受け問題類	S	nn	20.000		
Data shown in Japanese					
内部動荷重係数	Kv		1,000		
荷重分配係数	Ka		1.000		
過負荷係数	Ко		1.000		
信頼度係数	KR		1.000		
THE PROPERTY OFFICE			1.000 1.000		
寸法係数	Ks		1.000	1.000	
寸法係数 表面状態係数	Ks Cf		1.000	1.000	
寸法保数 表面状態係数 温度係数	Ks Cf KT		1.000 1.000 1	1.000	
 寸法係数 表面状態係数 温度係数 a面安全率 	Ks Cf KT SH		1.000 1.000 1 1	1.000 1.000 .000	
 寸法保数 表面状態保数 温度保数 富面安全率 曲げ安全率 	Ks Cf KT SH SF		1.000 1.000 1 1 1	1.000 1.000 .000 .000	
 寸注係数 表面状態係数 温度係数 富面安全率 曲げ安全率 前重の位置 	Ks Cf KT SH SF	 	1.000 1.000 1 1 1 1 金先行	1.000 1.000 .000 .000	
 寸法保設 表面状態保数 温度保数 歯面安全率 曲丁安全率 荷重の位置 通貨荷の回数 	Ks Cf KT SH SF Ns	 ain-1	1.000 1.000 1 1 1 1 5 元 7	1.000 1.000 .0000 .000 .0000 .000 .000 .000 .000 .000 .000 .000 .000 .0	

by AGMA

接線問意	Pt.	N	2151	.5374	
[1000583]					
弹性係数	Qp	√7#Pa	190	. 1995	
Data shown in Japanese					
かみあい環度係数	Cne		0	.0725	
かみあい修正併計	Co		0	.80	
応力編り返し係数	211		1.4720	1.4720	
許容積極応力数	Sac	MPa	1240	1240	
接触応力数	Sc	MPa	984, 0545		
許容揚触問重係数	Kac	MPa	25.0320	25.0320	
接触简重係数	K	MPa	7	2757	
許容伝達動力	Pac	kl	10.3016	10.8368	
歯面(建さ(Pac/P)	SFc		3.4415	8.4405	
サービスファクタ	Cof		1.0010	1.0303	
[曲げ強さ]					
リム厚さ係数	3B		1.0010	1.0303	
幾何係数			0.2592	0.2812	
応力編り返し係数	YN		2.7010	2.7001	
許容単位商業	Uat	MPa	305.1244	208.6525	
単位荷重	u	MPa	107.5768		
詳容曲げ応力数	Sat	MPa	373	\$75	
曲げ応力数	St	MPa	360.7819	156.6590	
許容伝達動力	Pat	M	8,3019	8.0120	
由げ強さ(Pat/P)	SFL		2.8383	2.8891	
サービアフラクタ	Fed		1 0010	1.0116	

Fig. 23.9 Strength Results by AGMA

Table 23.1 Comparison between FEM Analysis
and Strength Calculation Results

and Buengui Calculation Results					
Root Bending Stress (MPa)					
Pinion	Gear				
286.7	344.5				
172.9	166.6				
360.8	356.7				
Tooth Face Stress (MPa)					
2210.4					
1008.9					
984.1					
	Stress (MPa) Pinion 286.7 172.9 360.8 ress (MPa) 221 100 98				

24. Other Features

- 24.1 Design Data Saving and Reading
- 24.2 Printing (Gear Dimensions, Mesh Division Result, Pinion -Gear Meshing Fig.)
- 24.3 Output of Stress/Displacement List (txt or csv)
- 24.4 Output of Node Coordinate/Element List (txt or csv)

25. Required System Configuration

(1) Operating system

Windows NT Workstation Ver 4.0, Windows 2000, Windows XP

(2) Computer

Personal computer with Pentium 1 GHz or faster capable of running Windows

- (3) CD-ROM drive
- (4) Windows-compatible monitor with 1024 \times 768 or higher resolution
- (5) 256 MB or more of available memory space
- (6) 100 MB or more of available hard disk space
- (7) Windows-compatible mouse or other pointing device
- (8) Windows-compatible printer

26. Option

- ① Tooth Modification (Biased)
- 2 Gear shaft Mounting Error Angle
- ③ Internal Gear
- (4) Batch Processing
 - (Continuous Calculation, Calculate Each Angle)
- (5) Range Change
- 6 Analyze Film Stress Only
- ⑦ Animation Display
- 8 Pitch Error
- Internal Stress
- 10 Mesh Model with Rim and Hub