[42] Skiving cutter design system (English ver.)

Fig.42.1 Skiving cutter design system

42.1 Abstract

Power Skiving, a type of gear cutting method for cylindrical gears (external gears, internal gears), has passed 100 years since the patent was established in 1910. However, in recent years, this construction method has been reviewed and special machines have been sold both in Japan and overseas. In addition, gear processing is not a gear cutting machine, but in recent years, spiral bevel gears and special gears are also being machined at machining centers (catalog (vol.16), page 41 pictures).

Power skiving can be processed with a high-performance machining center if the tool mounting angle (crossing angle, taper angle) and even the tool tooth profile are decided. The Skiving cutter design system is a software that can generate a tooth form of a tool (pinion cutter) from gear specifications and tool mounting angle. In addition, the generated blade shape can be generated as an approximate involute blade shape. Fig.42.1 shows the whole screen.

42.2 Software structure

Table 42.1 shows the configuration of the Skiving cutter design system. \bigcirc in Table 42 is included in the basic software, \bigcirc is optional.

Applicable gear: involute flat, helical gear (external gear, internal gear)

No.	Item	Page	Structure
1	Gear dimension	42.3	0
2	Tool dimension	42.4	0
3	Tooth profile (gear, tool)	42.5	0
4	Setting software (2D)	42.6	0
5	Tooth profile rendering	42.7	0
6	Generating profile	42.8	0
7	Tooth profile-output	42.9	0
8	Approximate involute profile	42.10	0
9	design data		0
10	Chip shape	42.12	0
11	Tool reviewing	42.13	0
12	Chamfering (R, C)	42.14	0

Table 42.1 software structure

 \bigcirc : included in the basic software, \bigcirc : optional software

42.3 Gear dimensions

When the work gear is an internal gear, the gear specifications are set as shown in Fig.42.2 and Fig.42.3. The dislocation coefficient has a direct input method, a tooth thickness, and an over ball (between ball) dimension. An example of an external gear is shown in 42.11.

Fig.42.2 Gear specification (internal gear)

Fig.42.3 Chamfer

Result of gear dimension			- • ×
Item	Symbol	Unit	Value
Transverse module	mt	mm	3.3522
Transverse pressure angle	at	deg	22.1316
Base cylindical helix angle	βb	deg	24.7897
Axial direction pitch	pt	mm	21.1224
Lead	pz	mm	1394.0798
Tooth depth	h	mm	6.7500
Cutting profile shift coefficient	xnc		0.2500
Min involute diameter(TIF)	dt	mm	217.7453
Max involute diameter	dh	mm	228.9901
Normal circular tooth thickness	sn	mm	4.1664
Transverse circular tooth thickness	st	mm	4.6556
Spanned teeth number	zm		11
Basic base tangent length	w	mm	97.3066
Design base tangent length	w	mm	97.3066
Measurement ball diameter	dp	mm	5.0260
Basic between distance	dm	mm	215.9706
Design between distance	dm'	mm	215.9706

Fig.42.4 dimensions

42.4 Tool dimensions

The specifications of the machining tool (pinion cutter) are shown in Fig.42.5. Here is an example when the tolerance angle during machining is set to $\varphi c = 20^{\circ}$ with respect to the helix angle of the gear of 26.5°. Figures 42.5a and 42.5b show the shape, position and clearance angle of the cutter, respectively.

In this software, a tool is attached at an intersection angle φc and a taper angle φt , and a tool edge shape when machining the gear of Fig. 42.2 is generated considering the rake angle and side clearance angle. For pinion cutters during helical gear machining, side rake angle (blade angle) is not given so that blade grinding is easy.

Tool setting			- • ×	January Standards
Item	Symbol	Unit	Value	H The second sec
Number of teeth	zc		25	
Crossed angle	φc	deg	20.00000	
Taper angle	φt	deg	3.00000	
Outer diameter	Do	mm	84.4976	Ein 42.5 . Dallaf anala
Inner diameter	Di	mm	57.0000	Fig.42.5a Relief angle
Clearance	ckf	mm	0.5000	
Tooth width	b	mm	15.0000	
Rake angle	θe	deg	5.00000	
Front relief angle	θf	deg	5.00000	
Side relief angle	θs	deg	2.0000	P løt
Tip R	Ra	mm	0.7000	
Helix direction			Right hand	
Virtual helix angle	βv	deg	6.5000	
Virtual reference diameter	dv	mm	75.4852	¢c
OK Cano	el Ba	ick	Clear	Taper angle ϕ t

Fig.42.5 Tool specifications Fig.42.5b Cutter position

42.5 Tooth profile (gear, tool)

The gear tooth profile is shown in Fig. 42.6, and the pinion cutter blade shape is shown in Fig.42.7. The blue wire type shown in Fig. 42.7 is the blade shape of the machined end face of the pinion cutter shown in Fig. 42.8, and the light blue line shows the blade shape of the upper face of the pinion cutter. The tooth profile has enlargement, reduction, distance measurement function.

Fig.42.8 Pinion cutter (tooth shape rendering function)

42.6 Assembly drawing (2D)

Figure 42.9 shows the assembly chart. As shown in Fig. 42.10, the tool point (A, B, C) of the machining coordinate value has the center of the gear as (0, 0, 0) origin.

Fig.42.10 Machining coordinate value

42.7 Tooth profile rendering

In the tooth shape rendering (Fig. 42.12 - 42.15), it is possible to check the engagement between the gear and the pinion cutter. As an auxiliary function, there is a function to move and rotate the tool in the X, Y, Z direction. Therefore, as shown in Fig.42.13, it is possible to check the relationship between the tool and the meshing (cutting) of the tool while turning the tool blade. In addition, it is possible to display only the pinion cutter as shown in Fig.42.15.

Fig.42.12 Tool cutting end face (cutting edge) and gear

Fig.42.13 Rake angle cross section

42.8 Tooth creation drawing

Fig. 42.15 shows the setting screen of the tooth creation diagram. Here, Fig. 42.16 shows the tooth creation Fig. When the cutting depth of the tool during roughing is 5 mm and the cutting depth of the finish is 6.75 mm.

42.9 Tooth profile file output

You can output the gear tooth form and the tool blade shape as DXF file and IGES file. Fig. 42.17 shows the tooth profile output setting screen, and Fig. 42.18 shows the tool CAD drawing example.

42.10 Approximate involute blade shape

Since the blade shape generated in Figure 42.18 can be approximated as an involute, it can be easily handled when ordering (manufacturing) a tool. For the blade shape of Fig. 42.18 in this example, as shown in Fig. 42.19, the pressure angle can be approximated by α n = 20.6265 ° and the helix angle by $\beta = 8 \circ 30$ 'in the case of the left cutting edge. As shown in Fig.42.20, the difference between the approximate blade shape and the theoretical blade shape is as small as 0.0007 mm in the vicinity of the cutting edge of the cutter.

Fig.42.20 Difference in approximate shape of involute (distance measurement)

42.12 Chip shape (option)

Figures 42.22 to 42.24 show the chip shape when skiving is performed under the processing conditions in Figure 42.21. In the machining condition of Fig. 42.21, you can set the feed amount, crossing angle and cutting amount of the tool arbitrarily. The chip shape shown in Fig. 42.22 and Fig. 42.23 shows the shape until one blade of the tool finishes cutting for the first time. Fig.42.24 shows the state of the gear and rake face, and Fig.42.25 shows the 2D cutting thickness by 100 times.

Item	Symbol	Unit	Value	
Feeding in gear axis direction	Vz	mm/rev	0.0500	
Division No. of rotation angle	N		51	
Crossed angle	φ c'	deg	20.0000	
Design taper angle	φť	deg	3.0000	
Design cutting amount	h	mm	6.7500	
Calculation result				
Feeding in axis direction(mm)	Gear rotatio	on angle(deg)	Tool rotation angle(deg)	
0.050000	359.987088		950.400000	
0.050002	360.000000		950.434088	
0.018939	136.358746		360.000000	
Chip shape(3D)	Chip thicknes	s(2D) Chip thick	ness value(CSV)	

Fig.42.21 Cutting conditions

Gear and chip shape

Fig.42.22 Chip shape

Fig.42.24 Gears and rake faces

At Chip thickness value(CSV) in the cutting condition (Fig. 42.21), the chip shape can be output to the csv file as shown in Fig.42.24.

Fig.42.23

42.13 Tool sharing calculation (option)

When machining a gear different from Fig. 42.2 with the tool of Fig. 42.18, calculate how much you can share with this tool. The gear of Fig. 42.25 has the same pressure angle as the gear module of Fig. 42.2, but the number of teeth and the helix angle are different. Also, if the mounting angle of the tool is shown in Fig. 42.26, Fig. 42.27 and Fig. 42.28 can be displayed. Then, if we compare the \square portion of Fig. 42.28 with the tooth profile of the gear specification (Fig. 42.25), we see that the difference is 1.2 µm as shown in Fig.42.29. Similarly, measuring the left tooth surface is 0.7 µm.

As shown above, by adjusting the intersection angle and taper angle even if the tool is different from the target gear, it is possible to minimize the tooth profile error so it is possible to share tools. However, in the case of this example, they match very well, but there are cases where they do not agree well depending on specifications and conditions. And it is also possible to analyze the tooth shape rendering table shown in Fig. 42.26 (Fig.42.27) and the chip shape (Fig.42.22) based on the processing condition (Fig.42.21).

Here we showed examples of internal gears, but external gears can be calculated in the same way. In addition, tool sharing is calculated on the 2nd screen as shown in Fig.42.30.

Gear kind 💿	Internal e	ear	○ External gear	
tems Tip chamfering				
Item	Symbol	Unit	Value	
Normal module	mn	mm	3.00000	
Number of teeth	z		88	
Normal pressure angle	an	deg	20.00000	
Helix angle	β	deg	25 * 0 * 0.00 * 🛄	
Helix direction			Right hand 🗸 🗸	
Reference diameter	d	mm	291.2918	
Base diameter	db	mm	270.3085	
Input type of tooth thickness			Profile shift coefficien v	
Normal profile shift coefficient	xn		0.25000	
Spanned teeth number	Zm		14	
Base tangent length	W	mm	124.96513	
Measurement ball diameter	dp	mm	5.02300	
Between distance	dm	mm	286.02907	
Tooth thinning for backlash	fn	mm	0.0000	
Tip diameter	da	mm	286.7918	
Root diameter	df	mm	300.2918	
Root R	Rf	mm	1.1250	
Face width	b	mm	30.0000	

Fig.42.25 Gear specification (tool sharing)

🏷 Tool set angle			- • •		
Item	Symbol	Unit	Value		
Crossed angle	φc	deg	18.00000		
Design taper angle	φt	deg	3.00000		
OK Cancel Back Clear					

Tool set angle Fig.42.26

🔁 🖑 🖴

Zo

Fig.42.27 Rendering Fig.42.28 Creating tooth profile

Fig.42.29

Fig.42.29 Distance measurement

Fig.42.30 Tool shared screen

42.14 External gear example

Like the internal gear, the external gear calculates the tool edge shape, the chip shape, and the involute approximate shape. Calculation examples are shown in Fig.42.31 ~ 42.43.

🏷 Gear setting			- • •	
Gear kind O) Internal e	ear	 External gear 	
Items Tip chamfering				
Item	Symbol	Unit	Value	6
Normal module	mn	mm	3.00000	Result of gear dime
Number of teeth	z		25	Item
Normal pressure angle	an	deg	20.00000	Transverse m
Helix angle	β	deg	25 0 0.00 "	Transverse press
Helix direction			Right hand \sim	Base cylindical he
Reference diameter	d	mm	82.7533	Axial direction
Base diameter	db	mm	76.7922	Lead
Input type of tooth thickness			Profile shift coefficien \sim	Tooth dept
Normal profile shift coefficient	xn		0.25000	Cutting profile shift
Spanned teeth number	Zm		5	Min involute diam
Base tangent length	W	mm	41.75623	Max involute di
Measurement ball diameter	dp	mm	5.30300	Normal circular toot
Over ball distance	dm	mm	91.50713	Transverse circular to
Tooth thinning for backlash	fn	mm	0.0000	Spanned teeth r
Tip diameter	da	mm	90.2533	Basic base tange
Root diameter	df	mm	76.7533	Design base tange
Basic rack root R	Rf	mm	1.1250	
Face width	b	mm	30.0000	Measurement ball
OK Oment	Back	0.	ndard Clear	Basic over ball o
OK Cancel	Back	Sta	ndard Clear	Design over ball

Result of gear dimension			
Item	Symbol	Unit	Value
Transverse module	mt	mm	3.3101
Transverse pressure angle	æt	deg	21.8802
Base cylindical helix angle	βb	deg	23.3990
Axial direction pitch	pt	mm	22.3009
Lead	pz	mm	557.5231
Tooth depth	h	mm	6.7500
Cutting profile shift coefficient	xnc		0.2500
Min involute diameter(TIF)	dt	mm	79.0391
Max involute diameter	dh	mm	90.2533
Normal circular tooth thickness	sn	mm	5.2583
Transverse circular tooth thickness	st	mm	5.8019
Spanned teeth number	zm		5
Basic base tangent length	w	mm	41.7562
Design base tangent length	w	mm	41.7562
Measurement ball diameter	dp	mm 📘	5.3030
Basic over ball distance	dm	mm	91.5071
Design over ball distance	dm'	mm	91.5071

Fig.42.31 Gear specification (without chamfer)

Fig.42.32 Gear specifications

> Tool setting				
Item	Symbol	Unit	Value	
Number of teeth	zc		39	
Crossed angle	φc	deg	-20.00000	
Taper angle	φt	deg	3.00000	
Outer diameter	Do	mm	123.4552	
Inner diameter	Di	mm	96.4181	
Clearance	ckf	mm	0.7500	
Tooth width	Ь	mm	10.0000	
Rake angle	θe	deg	5.00000	
Front relief angle	θf	deg	5.00000	
Side relief angle	θs	deg	2.0000	
Tip R	Ra	mm	1.1250	
Helix direction			Left hand	
Virtual helix angle	βv	deg	5.0000	
Virtual reference diameter	dv	mm	117.4469	
OK Cano	el Ba	ack	Clear	

Fig.42.33 Tool specifications

Fig.42.43 Gear and chip shape (external gear)

42.15 Chamfer C, R (option)

If it is necessary to chamfer teeth of a gear, you can give a chamfer shape to the tool. As shown in Fig.42.44, chamfering of gear specifications in Fig.42.2 can select C face and R face.

Gear kind 🔘		🔵 Internal (ear	External gear	
Items	Tip chamfering				
	Item	Symbol	Unit	Value	
	Tip chamfering			Chamfering	
	Tip R	Ra	mm	No Rounding	
Lengt	h of tooth depth directio	n Cah	mm	Chamfering	
Lor	ngth of tooth thickness	Caw	mm	0.5000	

Fig.42.44 Chamfer setting

42.16 HELP function

You can use the [HELP] function if you want to know the operation method. If you have unknown contents as shown in Fig.42.46, you can select the table of contents of Fig.42.46 by pressing [F1] with that screen active as shown in Fig.44.45.

Fig.42.46 Explanation (example of chip)

-561.650366 Chip shape(3D) Chip thickness(2D) Chip thickness value(CSV)

230.769231

360.000000

Default

0.050000

-0.049996

0.078000